/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Example showing the use of CUFFT for fast 1D-convolution using FFT. * This sample is the same as simpleCUFFT, except that it uses a callback * function to perform the pointwise multiply and scale, on input to the * inverse transform. * */ // includes, system #include #include #include #include // includes, project #include #include #include #include #include // Complex data type typedef float2 Complex; static __device__ __host__ inline Complex ComplexAdd(Complex, Complex); static __device__ __host__ inline Complex ComplexScale(Complex, float); static __device__ __host__ inline Complex ComplexMul(Complex, Complex); // This is the callback routine prototype static __device__ cufftComplex ComplexPointwiseMulAndScale(void *a, size_t index, void *cb_info, void *sharedmem); typedef struct _cb_params { Complex *filter; float scale; } cb_params; // This is the callback routine. It does complex pointwise multiplication with // scaling. static __device__ cufftComplex ComplexPointwiseMulAndScale(void *a, size_t index, void *cb_info, void *sharedmem) { cb_params *my_params = (cb_params *)cb_info; return (cufftComplex)ComplexScale( ComplexMul(((Complex *)a)[index], (my_params->filter)[index]), my_params->scale); } // Define the device pointer to the callback routine. The host code will fetch // this and pass it to CUFFT __device__ cufftCallbackLoadC myOwnCallbackPtr = ComplexPointwiseMulAndScale; // Filtering functions void Convolve(const Complex *, int, const Complex *, int, Complex *); // Padding functions int PadData(const Complex *, Complex **, int, const Complex *, Complex **, int); //////////////////////////////////////////////////////////////////////////////// // declaration, forward int runTest(int argc, char **argv); // The filter size is assumed to be a number smaller than the signal size #define SIGNAL_SIZE 50 #define FILTER_KERNEL_SIZE 11 //////////////////////////////////////////////////////////////////////////////// // Program main //////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { struct cudaDeviceProp properties; int device; checkCudaErrors(cudaGetDevice(&device)); checkCudaErrors(cudaGetDeviceProperties(&properties, device)); if (!(properties.major >= 2)) { printf("simpleCUFFT_callback requires CUDA architecture SM2.0 or higher\n"); return EXIT_WAIVED; } return runTest(argc, argv); } //////////////////////////////////////////////////////////////////////////////// //! Run a simple test for CUFFT callbacks //////////////////////////////////////////////////////////////////////////////// int runTest(int argc, char **argv) { printf("[simpleCUFFT_callback] is starting...\n"); findCudaDevice(argc, (const char **)argv); // Allocate host memory for the signal Complex *h_signal = (Complex *)malloc(sizeof(Complex) * SIGNAL_SIZE); // Initialize the memory for the signal for (unsigned int i = 0; i < SIGNAL_SIZE; ++i) { h_signal[i].x = rand() / (float)RAND_MAX; h_signal[i].y = 0; } // Allocate host memory for the filter Complex *h_filter_kernel = (Complex *)malloc(sizeof(Complex) * FILTER_KERNEL_SIZE); // Initialize the memory for the filter for (unsigned int i = 0; i < FILTER_KERNEL_SIZE; ++i) { h_filter_kernel[i].x = rand() / (float)RAND_MAX; h_filter_kernel[i].y = 0; } // Pad signal and filter kernel Complex *h_padded_signal; Complex *h_padded_filter_kernel; int new_size = PadData(h_signal, &h_padded_signal, SIGNAL_SIZE, h_filter_kernel, &h_padded_filter_kernel, FILTER_KERNEL_SIZE); int mem_size = sizeof(Complex) * new_size; // Allocate device memory for signal Complex *d_signal; checkCudaErrors(cudaMalloc((void **)&d_signal, mem_size)); // Copy host memory to device checkCudaErrors( cudaMemcpy(d_signal, h_padded_signal, mem_size, cudaMemcpyHostToDevice)); // Allocate device memory for filter kernel Complex *d_filter_kernel; checkCudaErrors(cudaMalloc((void **)&d_filter_kernel, mem_size)); // Copy host memory to device checkCudaErrors(cudaMemcpy(d_filter_kernel, h_padded_filter_kernel, mem_size, cudaMemcpyHostToDevice)); // Create one CUFFT plan for the forward transforms, and one for the reverse // transform with load callback. cufftHandle plan, cb_plan; size_t work_size; checkCudaErrors(cufftCreate(&plan)); checkCudaErrors(cufftCreate(&cb_plan)); checkCudaErrors(cufftMakePlan1d(plan, new_size, CUFFT_C2C, 1, &work_size)); checkCudaErrors(cufftMakePlan1d(cb_plan, new_size, CUFFT_C2C, 1, &work_size)); // Define a structure used to pass in the device address of the filter kernel, // and the scale factor cb_params h_params; h_params.filter = d_filter_kernel; h_params.scale = 1.0f / new_size; // Allocate device memory for parameters cb_params *d_params; checkCudaErrors(cudaMalloc((void **)&d_params, sizeof(cb_params))); // Copy host memory to device checkCudaErrors(cudaMemcpy(d_params, &h_params, sizeof(cb_params), cudaMemcpyHostToDevice)); // The host needs to get a copy of the device pointer to the callback cufftCallbackLoadC hostCopyOfCallbackPtr; checkCudaErrors(cudaMemcpyFromSymbol(&hostCopyOfCallbackPtr, myOwnCallbackPtr, sizeof(hostCopyOfCallbackPtr))); // Now associate the load callback with the plan. cufftResult status = cufftXtSetCallback(cb_plan, (void **)&hostCopyOfCallbackPtr, CUFFT_CB_LD_COMPLEX, (void **)&d_params); if (status == CUFFT_LICENSE_ERROR) { printf("This sample requires a valid license file.\n"); printf( "The file was either not found, out of date, or otherwise invalid.\n"); return EXIT_WAIVED; } checkCudaErrors(cufftXtSetCallback(cb_plan, (void **)&hostCopyOfCallbackPtr, CUFFT_CB_LD_COMPLEX, (void **)&d_params)); // Transform signal and kernel printf("Transforming signal cufftExecC2C\n"); checkCudaErrors(cufftExecC2C(plan, (cufftComplex *)d_signal, (cufftComplex *)d_signal, CUFFT_FORWARD)); checkCudaErrors(cufftExecC2C(plan, (cufftComplex *)d_filter_kernel, (cufftComplex *)d_filter_kernel, CUFFT_FORWARD)); // Transform signal back, using the callback to do the pointwise multiply on // the way in. printf("Transforming signal back cufftExecC2C\n"); checkCudaErrors(cufftExecC2C(cb_plan, (cufftComplex *)d_signal, (cufftComplex *)d_signal, CUFFT_INVERSE)); // Copy device memory to host Complex *h_convolved_signal = h_padded_signal; checkCudaErrors(cudaMemcpy(h_convolved_signal, d_signal, mem_size, cudaMemcpyDeviceToHost)); // Allocate host memory for the convolution result Complex *h_convolved_signal_ref = (Complex *)malloc(sizeof(Complex) * SIGNAL_SIZE); // Convolve on the host Convolve(h_signal, SIGNAL_SIZE, h_filter_kernel, FILTER_KERNEL_SIZE, h_convolved_signal_ref); // check result bool bTestResult = sdkCompareL2fe((float *)h_convolved_signal_ref, (float *)h_convolved_signal, 2 * SIGNAL_SIZE, 1e-5f); // Destroy CUFFT context checkCudaErrors(cufftDestroy(plan)); checkCudaErrors(cufftDestroy(cb_plan)); // cleanup memory free(h_signal); free(h_filter_kernel); free(h_padded_signal); free(h_padded_filter_kernel); free(h_convolved_signal_ref); checkCudaErrors(cudaFree(d_signal)); checkCudaErrors(cudaFree(d_filter_kernel)); checkCudaErrors(cudaFree(d_params)); return bTestResult ? EXIT_SUCCESS : EXIT_FAILURE; } // Pad data int PadData(const Complex *signal, Complex **padded_signal, int signal_size, const Complex *filter_kernel, Complex **padded_filter_kernel, int filter_kernel_size) { int minRadius = filter_kernel_size / 2; int maxRadius = filter_kernel_size - minRadius; int new_size = signal_size + maxRadius; // Pad signal Complex *new_data = (Complex *)malloc(sizeof(Complex) * new_size); memcpy(new_data + 0, signal, signal_size * sizeof(Complex)); memset(new_data + signal_size, 0, (new_size - signal_size) * sizeof(Complex)); *padded_signal = new_data; // Pad filter new_data = (Complex *)malloc(sizeof(Complex) * new_size); memcpy(new_data + 0, filter_kernel + minRadius, maxRadius * sizeof(Complex)); memset(new_data + maxRadius, 0, (new_size - filter_kernel_size) * sizeof(Complex)); memcpy(new_data + new_size - minRadius, filter_kernel, minRadius * sizeof(Complex)); *padded_filter_kernel = new_data; return new_size; } //////////////////////////////////////////////////////////////////////////////// // Filtering operations //////////////////////////////////////////////////////////////////////////////// // Computes convolution on the host void Convolve(const Complex *signal, int signal_size, const Complex *filter_kernel, int filter_kernel_size, Complex *filtered_signal) { int minRadius = filter_kernel_size / 2; int maxRadius = filter_kernel_size - minRadius; // Loop over output element indices for (int i = 0; i < signal_size; ++i) { filtered_signal[i].x = filtered_signal[i].y = 0; // Loop over convolution indices for (int j = -maxRadius + 1; j <= minRadius; ++j) { int k = i + j; if (k >= 0 && k < signal_size) { filtered_signal[i] = ComplexAdd(filtered_signal[i], ComplexMul(signal[k], filter_kernel[minRadius - j])); } } } } //////////////////////////////////////////////////////////////////////////////// // Complex operations //////////////////////////////////////////////////////////////////////////////// // Complex addition static __device__ __host__ inline Complex ComplexAdd(Complex a, Complex b) { Complex c; c.x = a.x + b.x; c.y = a.y + b.y; return c; } // Complex scale static __device__ __host__ inline Complex ComplexScale(Complex a, float s) { Complex c; c.x = s * a.x; c.y = s * a.y; return c; } // Complex multiplication static __device__ __host__ inline Complex ComplexMul(Complex a, Complex b) { Complex c; c.x = a.x * b.x - a.y * b.y; c.y = a.x * b.y + a.y * b.x; return c; }