/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Test three linear solvers, including Cholesky, LU and QR. * The user has to prepare a sparse matrix of "matrix market format" (with * extension .mtx). For example, the user can download matrices in Florida * Sparse Matrix Collection. * (http://www.cise.ufl.edu/research/sparse/matrices/) * * The user needs to choose a solver by switch -R and * to provide the path of the matrix by switch -F, then * the program solves * A*x = b where b = ones(m,1) * and reports relative error * |b-A*x|/(|A|*|x|) * * The elapsed time is also reported so the user can compare efficiency of * different solvers. * * How to use * ./cuSolverDn_LinearSolver // Default: cholesky * ./cuSolverDn_LinearSolver -R=chol -filefile> // cholesky factorization * ./cuSolverDn_LinearSolver -R=lu -file // LU with partial * pivoting * ./cuSolverDn_LinearSolver -R=qr -file // QR factorization * * Remark: the absolute error on solution x is meaningless without knowing * condition number of A. The relative error on residual should be close to * machine zero, i.e. 1.e-15. */ #include #include #include #include #include #include #include "cublas_v2.h" #include "cusolverDn.h" #include "helper_cuda.h" #include "helper_cusolver.h" template int loadMMSparseMatrix(char *filename, char elem_type, bool csrFormat, int *m, int *n, int *nnz, T_ELEM **aVal, int **aRowInd, int **aColInd, int extendSymMatrix); void UsageDN(void) { printf("\n"); printf("-h : display this help\n"); printf("-R= : choose a linear solver\n"); printf(" chol (cholesky factorization), this is default\n"); printf(" qr (QR factorization)\n"); printf(" lu (LU factorization)\n"); printf("-lda= : leading dimension of A , m by default\n"); printf("-file=: filename containing a matrix in MM format\n"); printf("-device= : if want to run on specific GPU\n"); exit(0); } /* * solve A*x = b by Cholesky factorization * */ int linearSolverCHOL(cusolverDnHandle_t handle, int n, const double *Acopy, int lda, const double *b, double *x) { int bufferSize = 0; int *info = NULL; double *buffer = NULL; double *A = NULL; int h_info = 0; double start, stop; double time_solve; cublasFillMode_t uplo = CUBLAS_FILL_MODE_LOWER; checkCudaErrors(cusolverDnDpotrf_bufferSize(handle, uplo, n, (double *)Acopy, lda, &bufferSize)); checkCudaErrors(cudaMalloc(&info, sizeof(int))); checkCudaErrors(cudaMalloc(&buffer, sizeof(double) * bufferSize)); checkCudaErrors(cudaMalloc(&A, sizeof(double) * lda * n)); // prepare a copy of A because potrf will overwrite A with L checkCudaErrors( cudaMemcpy(A, Acopy, sizeof(double) * lda * n, cudaMemcpyDeviceToDevice)); checkCudaErrors(cudaMemset(info, 0, sizeof(int))); start = second(); start = second(); checkCudaErrors( cusolverDnDpotrf(handle, uplo, n, A, lda, buffer, bufferSize, info)); checkCudaErrors( cudaMemcpy(&h_info, info, sizeof(int), cudaMemcpyDeviceToHost)); if (0 != h_info) { fprintf(stderr, "Error: Cholesky factorization failed\n"); } checkCudaErrors( cudaMemcpy(x, b, sizeof(double) * n, cudaMemcpyDeviceToDevice)); checkCudaErrors(cusolverDnDpotrs(handle, uplo, n, 1, A, lda, x, n, info)); checkCudaErrors(cudaDeviceSynchronize()); stop = second(); time_solve = stop - start; fprintf(stdout, "timing: cholesky = %10.6f sec\n", time_solve); if (info) { checkCudaErrors(cudaFree(info)); } if (buffer) { checkCudaErrors(cudaFree(buffer)); } if (A) { checkCudaErrors(cudaFree(A)); } return 0; } /* * solve A*x = b by LU with partial pivoting * */ int linearSolverLU(cusolverDnHandle_t handle, int n, const double *Acopy, int lda, const double *b, double *x) { int bufferSize = 0; int *info = NULL; double *buffer = NULL; double *A = NULL; int *ipiv = NULL; // pivoting sequence int h_info = 0; double start, stop; double time_solve; checkCudaErrors(cusolverDnDgetrf_bufferSize(handle, n, n, (double *)Acopy, lda, &bufferSize)); checkCudaErrors(cudaMalloc(&info, sizeof(int))); checkCudaErrors(cudaMalloc(&buffer, sizeof(double) * bufferSize)); checkCudaErrors(cudaMalloc(&A, sizeof(double) * lda * n)); checkCudaErrors(cudaMalloc(&ipiv, sizeof(int) * n)); // prepare a copy of A because getrf will overwrite A with L checkCudaErrors( cudaMemcpy(A, Acopy, sizeof(double) * lda * n, cudaMemcpyDeviceToDevice)); checkCudaErrors(cudaMemset(info, 0, sizeof(int))); start = second(); start = second(); checkCudaErrors(cusolverDnDgetrf(handle, n, n, A, lda, buffer, ipiv, info)); checkCudaErrors( cudaMemcpy(&h_info, info, sizeof(int), cudaMemcpyDeviceToHost)); if (0 != h_info) { fprintf(stderr, "Error: LU factorization failed\n"); } checkCudaErrors( cudaMemcpy(x, b, sizeof(double) * n, cudaMemcpyDeviceToDevice)); checkCudaErrors( cusolverDnDgetrs(handle, CUBLAS_OP_N, n, 1, A, lda, ipiv, x, n, info)); checkCudaErrors(cudaDeviceSynchronize()); stop = second(); time_solve = stop - start; fprintf(stdout, "timing: LU = %10.6f sec\n", time_solve); if (info) { checkCudaErrors(cudaFree(info)); } if (buffer) { checkCudaErrors(cudaFree(buffer)); } if (A) { checkCudaErrors(cudaFree(A)); } if (ipiv) { checkCudaErrors(cudaFree(ipiv)); } return 0; } /* * solve A*x = b by QR * */ int linearSolverQR(cusolverDnHandle_t handle, int n, const double *Acopy, int lda, const double *b, double *x) { cublasHandle_t cublasHandle = NULL; // used in residual evaluation int bufferSize = 0; int bufferSize_geqrf = 0; int bufferSize_ormqr = 0; int *info = NULL; double *buffer = NULL; double *A = NULL; double *tau = NULL; int h_info = 0; double start, stop; double time_solve; const double one = 1.0; checkCudaErrors(cublasCreate(&cublasHandle)); checkCudaErrors(cusolverDnDgeqrf_bufferSize(handle, n, n, (double *)Acopy, lda, &bufferSize_geqrf)); checkCudaErrors(cusolverDnDormqr_bufferSize(handle, CUBLAS_SIDE_LEFT, CUBLAS_OP_T, n, 1, n, A, lda, NULL, x, n, &bufferSize_ormqr)); printf("buffer_geqrf = %d, buffer_ormqr = %d \n", bufferSize_geqrf, bufferSize_ormqr); bufferSize = (bufferSize_geqrf > bufferSize_ormqr) ? bufferSize_geqrf : bufferSize_ormqr; checkCudaErrors(cudaMalloc(&info, sizeof(int))); checkCudaErrors(cudaMalloc(&buffer, sizeof(double) * bufferSize)); checkCudaErrors(cudaMalloc(&A, sizeof(double) * lda * n)); checkCudaErrors(cudaMalloc((void **)&tau, sizeof(double) * n)); // prepare a copy of A because getrf will overwrite A with L checkCudaErrors( cudaMemcpy(A, Acopy, sizeof(double) * lda * n, cudaMemcpyDeviceToDevice)); checkCudaErrors(cudaMemset(info, 0, sizeof(int))); start = second(); start = second(); // compute QR factorization checkCudaErrors( cusolverDnDgeqrf(handle, n, n, A, lda, tau, buffer, bufferSize, info)); checkCudaErrors( cudaMemcpy(&h_info, info, sizeof(int), cudaMemcpyDeviceToHost)); if (0 != h_info) { fprintf(stderr, "Error: LU factorization failed\n"); } checkCudaErrors( cudaMemcpy(x, b, sizeof(double) * n, cudaMemcpyDeviceToDevice)); // compute Q^T*b checkCudaErrors(cusolverDnDormqr(handle, CUBLAS_SIDE_LEFT, CUBLAS_OP_T, n, 1, n, A, lda, tau, x, n, buffer, bufferSize, info)); // x = R \ Q^T*b checkCudaErrors(cublasDtrsm(cublasHandle, CUBLAS_SIDE_LEFT, CUBLAS_FILL_MODE_UPPER, CUBLAS_OP_N, CUBLAS_DIAG_NON_UNIT, n, 1, &one, A, lda, x, n)); checkCudaErrors(cudaDeviceSynchronize()); stop = second(); time_solve = stop - start; fprintf(stdout, "timing: QR = %10.6f sec\n", time_solve); if (cublasHandle) { checkCudaErrors(cublasDestroy(cublasHandle)); } if (info) { checkCudaErrors(cudaFree(info)); } if (buffer) { checkCudaErrors(cudaFree(buffer)); } if (A) { checkCudaErrors(cudaFree(A)); } if (tau) { checkCudaErrors(cudaFree(tau)); } return 0; } void parseCommandLineArguments(int argc, char *argv[], struct testOpts &opts) { memset(&opts, 0, sizeof(opts)); if (checkCmdLineFlag(argc, (const char **)argv, "-h")) { UsageDN(); } if (checkCmdLineFlag(argc, (const char **)argv, "R")) { char *solverType = NULL; getCmdLineArgumentString(argc, (const char **)argv, "R", &solverType); if (solverType) { if ((STRCASECMP(solverType, "chol") != 0) && (STRCASECMP(solverType, "lu") != 0) && (STRCASECMP(solverType, "qr") != 0)) { printf("\nIncorrect argument passed to -R option\n"); UsageDN(); } else { opts.testFunc = solverType; } } } if (checkCmdLineFlag(argc, (const char **)argv, "file")) { char *fileName = 0; getCmdLineArgumentString(argc, (const char **)argv, "file", &fileName); if (fileName) { opts.sparse_mat_filename = fileName; } else { printf("\nIncorrect filename passed to -file \n "); UsageDN(); } } if (checkCmdLineFlag(argc, (const char **)argv, "lda")) { opts.lda = getCmdLineArgumentInt(argc, (const char **)argv, "lda"); } } int main(int argc, char *argv[]) { struct testOpts opts; cusolverDnHandle_t handle = NULL; cublasHandle_t cublasHandle = NULL; // used in residual evaluation cudaStream_t stream = NULL; int rowsA = 0; // number of rows of A int colsA = 0; // number of columns of A int nnzA = 0; // number of nonzeros of A int baseA = 0; // base index in CSR format int lda = 0; // leading dimension in dense matrix // CSR(A) from I/O int *h_csrRowPtrA = NULL; int *h_csrColIndA = NULL; double *h_csrValA = NULL; double *h_A = NULL; // dense matrix from CSR(A) double *h_x = NULL; // a copy of d_x double *h_b = NULL; // b = ones(m,1) double *h_r = NULL; // r = b - A*x, a copy of d_r double *d_A = NULL; // a copy of h_A double *d_x = NULL; // x = A \ b double *d_b = NULL; // a copy of h_b double *d_r = NULL; // r = b - A*x // the constants are used in residual evaluation, r = b - A*x const double minus_one = -1.0; const double one = 1.0; double x_inf = 0.0; double r_inf = 0.0; double A_inf = 0.0; int errors = 0; parseCommandLineArguments(argc, argv, opts); if (NULL == opts.testFunc) { opts.testFunc = "chol"; // By default running Cholesky as NO solver // selected with -R option. } findCudaDevice(argc, (const char **)argv); printf("step 1: read matrix market format\n"); if (opts.sparse_mat_filename == NULL) { opts.sparse_mat_filename = sdkFindFilePath("gr_900_900_crg.mtx", argv[0]); if (opts.sparse_mat_filename != NULL) printf("Using default input file [%s]\n", opts.sparse_mat_filename); else printf("Could not find gr_900_900_crg.mtx\n"); } else { printf("Using input file [%s]\n", opts.sparse_mat_filename); } if (opts.sparse_mat_filename == NULL) { fprintf(stderr, "Error: input matrix is not provided\n"); return EXIT_FAILURE; } if (loadMMSparseMatrix(opts.sparse_mat_filename, 'd', true, &rowsA, &colsA, &nnzA, &h_csrValA, &h_csrRowPtrA, &h_csrColIndA, true)) { exit(EXIT_FAILURE); } baseA = h_csrRowPtrA[0]; // baseA = {0,1} printf("sparse matrix A is %d x %d with %d nonzeros, base=%d\n", rowsA, colsA, nnzA, baseA); if (rowsA != colsA) { fprintf(stderr, "Error: only support square matrix\n"); exit(EXIT_FAILURE); } printf("step 2: convert CSR(A) to dense matrix\n"); lda = opts.lda ? opts.lda : rowsA; if (lda < rowsA) { fprintf(stderr, "Error: lda must be greater or equal to dimension of A\n"); exit(EXIT_FAILURE); } h_A = (double *)malloc(sizeof(double) * lda * colsA); h_x = (double *)malloc(sizeof(double) * colsA); h_b = (double *)malloc(sizeof(double) * rowsA); h_r = (double *)malloc(sizeof(double) * rowsA); assert(NULL != h_A); assert(NULL != h_x); assert(NULL != h_b); assert(NULL != h_r); memset(h_A, 0, sizeof(double) * lda * colsA); for (int row = 0; row < rowsA; row++) { const int start = h_csrRowPtrA[row] - baseA; const int end = h_csrRowPtrA[row + 1] - baseA; for (int colidx = start; colidx < end; colidx++) { const int col = h_csrColIndA[colidx] - baseA; const double Areg = h_csrValA[colidx]; h_A[row + col * lda] = Areg; } } printf("step 3: set right hand side vector (b) to 1\n"); for (int row = 0; row < rowsA; row++) { h_b[row] = 1.0; } // verify if A is symmetric or not. if (0 == strcmp(opts.testFunc, "chol")) { int issym = 1; for (int j = 0; j < colsA; j++) { for (int i = j; i < rowsA; i++) { double Aij = h_A[i + j * lda]; double Aji = h_A[j + i * lda]; if (Aij != Aji) { issym = 0; break; } } } if (!issym) { printf("Error: A has no symmetric pattern, please use LU or QR \n"); exit(EXIT_FAILURE); } } checkCudaErrors(cusolverDnCreate(&handle)); checkCudaErrors(cublasCreate(&cublasHandle)); checkCudaErrors(cudaStreamCreate(&stream)); checkCudaErrors(cusolverDnSetStream(handle, stream)); checkCudaErrors(cublasSetStream(cublasHandle, stream)); checkCudaErrors(cudaMalloc((void **)&d_A, sizeof(double) * lda * colsA)); checkCudaErrors(cudaMalloc((void **)&d_x, sizeof(double) * colsA)); checkCudaErrors(cudaMalloc((void **)&d_b, sizeof(double) * rowsA)); checkCudaErrors(cudaMalloc((void **)&d_r, sizeof(double) * rowsA)); printf("step 4: prepare data on device\n"); checkCudaErrors(cudaMemcpy(d_A, h_A, sizeof(double) * lda * colsA, cudaMemcpyHostToDevice)); checkCudaErrors( cudaMemcpy(d_b, h_b, sizeof(double) * rowsA, cudaMemcpyHostToDevice)); printf("step 5: solve A*x = b \n"); // d_A and d_b are read-only if (0 == strcmp(opts.testFunc, "chol")) { linearSolverCHOL(handle, rowsA, d_A, lda, d_b, d_x); } else if (0 == strcmp(opts.testFunc, "lu")) { linearSolverLU(handle, rowsA, d_A, lda, d_b, d_x); } else if (0 == strcmp(opts.testFunc, "qr")) { linearSolverQR(handle, rowsA, d_A, lda, d_b, d_x); } else { fprintf(stderr, "Error: %s is unknown function\n", opts.testFunc); exit(EXIT_FAILURE); } printf("step 6: evaluate residual\n"); checkCudaErrors( cudaMemcpy(d_r, d_b, sizeof(double) * rowsA, cudaMemcpyDeviceToDevice)); // r = b - A*x checkCudaErrors(cublasDgemm_v2(cublasHandle, CUBLAS_OP_N, CUBLAS_OP_N, rowsA, 1, colsA, &minus_one, d_A, lda, d_x, rowsA, &one, d_r, rowsA)); checkCudaErrors( cudaMemcpy(h_x, d_x, sizeof(double) * colsA, cudaMemcpyDeviceToHost)); checkCudaErrors( cudaMemcpy(h_r, d_r, sizeof(double) * rowsA, cudaMemcpyDeviceToHost)); x_inf = vec_norminf(colsA, h_x); r_inf = vec_norminf(rowsA, h_r); A_inf = mat_norminf(rowsA, colsA, h_A, lda); printf("|b - A*x| = %E \n", r_inf); printf("|A| = %E \n", A_inf); printf("|x| = %E \n", x_inf); printf("|b - A*x|/(|A|*|x|) = %E \n", r_inf / (A_inf * x_inf)); if (handle) { checkCudaErrors(cusolverDnDestroy(handle)); } if (cublasHandle) { checkCudaErrors(cublasDestroy(cublasHandle)); } if (stream) { checkCudaErrors(cudaStreamDestroy(stream)); } if (h_csrValA) { free(h_csrValA); } if (h_csrRowPtrA) { free(h_csrRowPtrA); } if (h_csrColIndA) { free(h_csrColIndA); } if (h_A) { free(h_A); } if (h_x) { free(h_x); } if (h_b) { free(h_b); } if (h_r) { free(h_r); } if (d_A) { checkCudaErrors(cudaFree(d_A)); } if (d_x) { checkCudaErrors(cudaFree(d_x)); } if (d_b) { checkCudaErrors(cudaFree(d_b)); } if (d_r) { checkCudaErrors(cudaFree(d_r)); } return 0; }