/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // // Template math library for common 3D functionality // // nvVector.h - 2-vector, 3-vector, and 4-vector templates and utilities // // This code is in part deriver from glh, a cross platform glut helper library. // The copyright for glh follows this notice. // // Copyright (c) NVIDIA Corporation. All rights reserved. //////////////////////////////////////////////////////////////////////////////// /* Copyright (c) 2000 Cass Everitt Copyright (c) 2000 NVIDIA Corporation All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * The names of contributors to this software may not be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. Cass Everitt - cass@r3.nu */ #ifndef NV_VECTOR_H #define NV_VECTOR_H namespace nv { template class vec2; template class vec3; template class vec4; ////////////////////////////////////////////////////////////////////// // // vec2 - template class for 2-tuple vector // ////////////////////////////////////////////////////////////////////// template class vec2 { public: typedef T value_type; int size() const { return 2; } //////////////////////////////////////////////////////// // // Constructors // //////////////////////////////////////////////////////// // Default/scalar constructor vec2(const T &t = T()) { for (int i = 0; i < size(); i++) { _array[i] = t; } } // Construct from array vec2(const T *tp) { for (int i = 0; i < size(); i++) { _array[i] = tp[i]; } } // Construct from explicit values vec2(const T v0, const T v1) { x = v0; y = v1; } explicit vec2(const vec3 &u) { for (int i = 0; i < size(); i++) { _array[i] = u._array[i]; } } explicit vec2(const vec4 &u) { for (int i = 0; i < size(); i++) { _array[i] = u._array[i]; } } const T *get_value() const { return _array; } vec2 &set_value(const T *rhs) { for (int i = 0; i < size(); i++) { _array[i] = rhs[i]; } return *this; } // indexing operators T &operator [](int i) { return _array[i]; } const T &operator [](int i) const { return _array[i]; } // type-cast operators operator T *() { return _array; } operator const T *() const { return _array; } //////////////////////////////////////////////////////// // // Math operators // //////////////////////////////////////////////////////// // scalar multiply assign friend vec2 &operator *= (vec2 &lhs, T d) { for (int i = 0; i < lhs.size(); i++) { lhs._array[i] *= d; } return lhs; } // component-wise vector multiply assign friend vec2 &operator *= (vec2 &lhs, const vec2 &rhs) { for (int i = 0; i < lhs.size(); i++) { lhs._array[i] *= rhs[i]; } return lhs; } // scalar divide assign friend vec2 &operator /= (vec2 &lhs, T d) { if (d == 0) { return lhs; } for (int i = 0; i < lhs.size(); i++) { lhs._array[i] /= d; } return lhs; } // component-wise vector divide assign friend vec2 &operator /= (vec2 &lhs, const vec2 &rhs) { for (int i = 0; i < lhs.size(); i++) { lhs._array[i] /= rhs._array[i]; } return lhs; } // component-wise vector add assign friend vec2 &operator += (vec2 &lhs, const vec2 &rhs) { for (int i = 0; i < lhs.size(); i++) { lhs._array[i] += rhs._array[i]; } return lhs; } // component-wise vector subtract assign friend vec2 &operator -= (vec2 &lhs, const vec2 &rhs) { for (int i = 0; i < lhs.size(); i++) { lhs._array[i] -= rhs._array[i]; } return lhs; } // unary negate friend vec2 operator - (const vec2 &rhs) { vec2 rv; for (int i = 0; i < rhs.size(); i++) { rv._array[i] = -rhs._array[i]; } return rv; } // vector add friend vec2 operator + (const vec2 &lhs, const vec2 &rhs) { vec2 rt(lhs); return rt += rhs; } // vector subtract friend vec2 operator - (const vec2 &lhs, const vec2 &rhs) { vec2 rt(lhs); return rt -= rhs; } // scalar multiply friend vec2 operator * (const vec2 &lhs, T rhs) { vec2 rt(lhs); return rt *= rhs; } // scalar multiply friend vec2 operator * (T lhs, const vec2 &rhs) { vec2 rt(lhs); return rt *= rhs; } // vector component-wise multiply friend vec2 operator * (const vec2 &lhs, const vec2 &rhs) { vec2 rt(lhs); return rt *= rhs; } // scalar multiply friend vec2 operator / (const vec2 &lhs, T rhs) { vec2 rt(lhs); return rt /= rhs; } // vector component-wise multiply friend vec2 operator / (const vec2 &lhs, const vec2 &rhs) { vec2 rt(lhs); return rt /= rhs; } //////////////////////////////////////////////////////// // // Comparison operators // //////////////////////////////////////////////////////// // equality friend bool operator == (const vec2 &lhs, const vec2 &rhs) { bool r = true; for (int i = 0; i < lhs.size(); i++) { r &= lhs._array[i] == rhs._array[i]; } return r; } // inequality friend bool operator != (const vec2 &lhs, const vec2 &rhs) { bool r = true; for (int i = 0; i < lhs.size(); i++) { r &= lhs._array[i] != rhs._array[i]; } return r; } //data intentionally left public to allow vec2.x union { struct { T x,y; // standard names for components }; struct { T s,t; // standard names for components }; T _array[2]; // array access }; }; ////////////////////////////////////////////////////////////////////// // // vec3 - template class for 3-tuple vector // ////////////////////////////////////////////////////////////////////// template class vec3 { public: typedef T value_type; int size() const { return 3; } //////////////////////////////////////////////////////// // // Constructors // //////////////////////////////////////////////////////// // Default/scalar constructor vec3(const T &t = T()) { for (int i = 0; i < size(); i++) { _array[i] = t; } } // Construct from array vec3(const T *tp) { for (int i = 0; i < size(); i++) { _array[i] = tp[i]; } } // Construct from explicit values vec3(const T v0, const T v1, const T v2) { x = v0; y = v1; z = v2; } explicit vec3(const vec4 &u) { for (int i = 0; i < size(); i++) { _array[i] = u._array[i]; } } explicit vec3(const vec2 &u, T v0) { x = u.x; y = u.y; z = v0; } const T *get_value() const { return _array; } vec3 &set_value(const T *rhs) { for (int i = 0; i < size(); i++) { _array[i] = rhs[i]; } return *this; } // indexing operators T &operator [](int i) { return _array[i]; } const T &operator [](int i) const { return _array[i]; } // type-cast operators operator T *() { return _array; } operator const T *() const { return _array; } //////////////////////////////////////////////////////// // // Math operators // //////////////////////////////////////////////////////// // scalar multiply assign friend vec3 &operator *= (vec3 &lhs, T d) { for (int i = 0; i < lhs.size(); i++) { lhs._array[i] *= d; } return lhs; } // component-wise vector multiply assign friend vec3 &operator *= (vec3 &lhs, const vec3 &rhs) { for (int i = 0; i < lhs.size(); i++) { lhs._array[i] *= rhs[i]; } return lhs; } // scalar divide assign friend vec3 &operator /= (vec3 &lhs, T d) { if (d == 0) { return lhs; } for (int i = 0; i < lhs.size(); i++) { lhs._array[i] /= d; } return lhs; } // component-wise vector divide assign friend vec3 &operator /= (vec3 &lhs, const vec3 &rhs) { for (int i = 0; i < lhs.size(); i++) { lhs._array[i] /= rhs._array[i]; } return lhs; } // component-wise vector add assign friend vec3 &operator += (vec3 &lhs, const vec3 &rhs) { for (int i = 0; i < lhs.size(); i++) { lhs._array[i] += rhs._array[i]; } return lhs; } // component-wise vector subtract assign friend vec3 &operator -= (vec3 &lhs, const vec3 &rhs) { for (int i = 0; i < lhs.size(); i++) { lhs._array[i] -= rhs._array[i]; } return lhs; } // unary negate friend vec3 operator - (const vec3 &rhs) { vec3 rv; for (int i = 0; i < rhs.size(); i++) { rv._array[i] = -rhs._array[i]; } return rv; } // vector add friend vec3 operator + (const vec3 &lhs, const vec3 &rhs) { vec3 rt(lhs); return rt += rhs; } // vector subtract friend vec3 operator - (const vec3 &lhs, const vec3 &rhs) { vec3 rt(lhs); return rt -= rhs; } // scalar multiply friend vec3 operator * (const vec3 &lhs, T rhs) { vec3 rt(lhs); return rt *= rhs; } // scalar multiply friend vec3 operator * (T lhs, const vec3 &rhs) { vec3 rt(lhs); return rt *= rhs; } // vector component-wise multiply friend vec3 operator * (const vec3 &lhs, const vec3 &rhs) { vec3 rt(lhs); return rt *= rhs; } // scalar multiply friend vec3 operator / (const vec3 &lhs, T rhs) { vec3 rt(lhs); return rt /= rhs; } // vector component-wise multiply friend vec3 operator / (const vec3 &lhs, const vec3 &rhs) { vec3 rt(lhs); return rt /= rhs; } //////////////////////////////////////////////////////// // // Comparison operators // //////////////////////////////////////////////////////// // equality friend bool operator == (const vec3 &lhs, const vec3 &rhs) { bool r = true; for (int i = 0; i < lhs.size(); i++) { r &= lhs._array[i] == rhs._array[i]; } return r; } // inequality friend bool operator != (const vec3 &lhs, const vec3 &rhs) { bool r = true; for (int i = 0; i < lhs.size(); i++) { r &= lhs._array[i] != rhs._array[i]; } return r; } //////////////////////////////////////////////////////////////////////////////// // // dimension specific operations // //////////////////////////////////////////////////////////////////////////////// // cross product friend vec3 cross(const vec3 &lhs, const vec3 &rhs) { vec3 r; r.x = lhs.y * rhs.z - lhs.z * rhs.y; r.y = lhs.z * rhs.x - lhs.x * rhs.z; r.z = lhs.x * rhs.y - lhs.y * rhs.x; return r; } //data intentionally left public to allow vec2.x union { struct { T x, y, z; // standard names for components }; struct { T s, t, r; // standard names for components }; T _array[3]; // array access }; }; ////////////////////////////////////////////////////////////////////// // // vec4 - template class for 4-tuple vector // ////////////////////////////////////////////////////////////////////// template class vec4 { public: typedef T value_type; int size() const { return 4; } //////////////////////////////////////////////////////// // // Constructors // //////////////////////////////////////////////////////// // Default/scalar constructor vec4(const T &t = T()) { for (int i = 0; i < size(); i++) { _array[i] = t; } } // Construct from array vec4(const T *tp) { for (int i = 0; i < size(); i++) { _array[i] = tp[i]; } } // Construct from explicit values vec4(const T v0, const T v1, const T v2, const T v3) { x = v0; y = v1; z = v2; w = v3; } explicit vec4(const vec3 &u, T v0) { x = u.x; y = u.y; z = u.z; w = v0; } explicit vec4(const vec2 &u, T v0, T v1) { x = u.x; y = u.y; z = v0; w = v1; } const T *get_value() const { return _array; } vec4 &set_value(const T *rhs) { for (int i = 0; i < size(); i++) { _array[i] = rhs[i]; } return *this; } // indexing operators T &operator [](int i) { return _array[i]; } const T &operator [](int i) const { return _array[i]; } // type-cast operators operator T *() { return _array; } operator const T *() const { return _array; } //////////////////////////////////////////////////////// // // Math operators // //////////////////////////////////////////////////////// // scalar multiply assign friend vec4 &operator *= (vec4 &lhs, T d) { for (int i = 0; i < lhs.size(); i++) { lhs._array[i] *= d; } return lhs; } // component-wise vector multiply assign friend vec4 &operator *= (vec4 &lhs, const vec4 &rhs) { for (int i = 0; i < lhs.size(); i++) { lhs._array[i] *= rhs[i]; } return lhs; } // scalar divide assign friend vec4 &operator /= (vec4 &lhs, T d) { if (d == 0) { return lhs; } for (int i = 0; i < lhs.size(); i++) { lhs._array[i] /= d; } return lhs; } // component-wise vector divide assign friend vec4 &operator /= (vec4 &lhs, const vec4 &rhs) { for (int i = 0; i < lhs.size(); i++) { lhs._array[i] /= rhs._array[i]; } return lhs; } // component-wise vector add assign friend vec4 &operator += (vec4 &lhs, const vec4 &rhs) { for (int i = 0; i < lhs.size(); i++) { lhs._array[i] += rhs._array[i]; } return lhs; } // component-wise vector subtract assign friend vec4 &operator -= (vec4 &lhs, const vec4 &rhs) { for (int i = 0; i < lhs.size(); i++) { lhs._array[i] -= rhs._array[i]; } return lhs; } // unary negate friend vec4 operator - (const vec4 &rhs) { vec4 rv; for (int i = 0; i < rhs.size(); i++) { rv._array[i] = -rhs._array[i]; } return rv; } // vector add friend vec4 operator + (const vec4 &lhs, const vec4 &rhs) { vec4 rt(lhs); return rt += rhs; } // vector subtract friend vec4 operator - (const vec4 &lhs, const vec4 &rhs) { vec4 rt(lhs); return rt -= rhs; } // scalar multiply friend vec4 operator * (const vec4 &lhs, T rhs) { vec4 rt(lhs); return rt *= rhs; } // scalar multiply friend vec4 operator * (T lhs, const vec4 &rhs) { vec4 rt(lhs); return rt *= rhs; } // vector component-wise multiply friend vec4 operator * (const vec4 &lhs, const vec4 &rhs) { vec4 rt(lhs); return rt *= rhs; } // scalar multiply friend vec4 operator / (const vec4 &lhs, T rhs) { vec4 rt(lhs); return rt /= rhs; } // vector component-wise multiply friend vec4 operator / (const vec4 &lhs, const vec4 &rhs) { vec4 rt(lhs); return rt /= rhs; } //////////////////////////////////////////////////////// // // Comparison operators // //////////////////////////////////////////////////////// // equality friend bool operator == (const vec4 &lhs, const vec4 &rhs) { bool r = true; for (int i = 0; i < lhs.size(); i++) { r &= lhs._array[i] == rhs._array[i]; } return r; } // inequality friend bool operator != (const vec4 &lhs, const vec4 &rhs) { bool r = true; for (int i = 0; i < lhs.size(); i++) { r &= lhs._array[i] != rhs._array[i]; } return r; } //data intentionally left public to allow vec2.x union { struct { T x, y, z, w; // standard names for components }; struct { T s, t, r, q; // standard names for components }; T _array[4]; // array access }; }; //////////////////////////////////////////////////////////////////////////////// // // Generic vector operations // //////////////////////////////////////////////////////////////////////////////// // compute the dot product of two vectors template inline typename T::value_type dot(const T &lhs, const T &rhs) { typename T::value_type r = 0; for (int i = 0; i < lhs.size(); i++) { r += lhs._array[i] * rhs._array[i]; } return r; } // return the length of the provided vector template< class T> inline typename T::value_type length(const T &vec) { typename T::value_type r = 0; for (int i = 0; i < vec.size(); i++) { r += vec._array[i]*vec._array[i]; } return typename T::value_type(sqrt(r)); } // return the squared norm template< class T> inline typename T::value_type square_norm(const T &vec) { typename T::value_type r = 0; for (int i = 0; i < vec.size(); i++) { r += vec._array[i]*vec._array[i]; } return r; } // return the normalized version of the vector template< class T> inline T normalize(const T &vec) { typename T::value_type sum(0); T r; for (int i = 0; i < vec.size(); i++) { sum += vec._array[i] * vec._array[i]; } sum = typename T::value_type(sqrt(sum)); if (sum > 0) for (int i = 0; i < vec.size(); i++) { r._array[i] = vec._array[i] / sum; } return r; } // In VC8 : min and max are already defined by a #define... #ifdef min #undef min #endif #ifdef max #undef max #endif //componentwise min template< class T> inline T min(const T &lhs, const T &rhs) { T rt; for (int i = 0; i < lhs.size(); i++) { rt._array[i] = std::min(lhs._array[i], rhs._array[i]); } return rt; } // componentwise max template< class T> inline T max(const T &lhs, const T &rhs) { T rt; for (int i = 0; i < lhs.size(); i++) { rt._array[i] = std::max(lhs._array[i], rhs._array[i]); } return rt; } }; #endif