
 

 

September 2013 

CUDA/OpenGL 
Fluid Simulation  

Nolan Goodnight 
ngoodnight@nvidia.com 



  

    

 

 

September 2013 

Document Change History 

Version Date Responsible Reason for Change 

0.1 2/22/07 Nolan Goodnight Initial draft 

1.0 4/02/07 Nolan Goodnight / 
Mark Harris 

Release version 

1.0 5/17/07 Nolan Goodnight Minor changes for Cuda 1.0 

    

 

 

 

 



 

 

September 2013  1  

 Abstract 

This document describes an NVIDIA CUDA implementation of a simple fluids solver for 
the Navier-Stokes equations for incompressible flow. The CUDA algorithms are based on 
Jos Stam’s FFT-based Stable Fluids system [1], and we refer the reader to this paper for 
mathematical and algorithmic details. We present the basic steps in one time iteration of the 
solver, and we show how each kernel is implemented using the CUDA C programming 
language. The results are displayed using OpenGL to render a particle system within the 
fluid. Figure 1 shows a screenshot of the fluids after several iterations. 

 

 

Figure 1. A screenshot of the CUDA fluids solver running on a 
512x512 domain. The fluid is displayed using particles that move 
according to the velocity field. 

  



 Title of App Note 

    

 

 

September 2013 

Motivation 

The core component of any fluid simulation is a numeric solver for the Navier-Stokes 
equations, represented over a uniform grid of spatial locations or grid cells. The solver works 
iteratively, where at each iteration or time step a set of discrete differential operators are 
applied to small groups of cells across the domain. These operators update fluid state, such 
as velocity and pressure, based on the grid values from the previous time step. For this 
implementation of Stable Fluids [1], one iteration consists of the following steps:  

 

Forces: Fluid velocity evolves according to force inputs over time. This step 
updates the fluid velocity field by integrating forces at each grid cell.  

 

Advection:  To update the fluid velocity field, this step transfers velocity values between 
grid cells. The transfer distance depends on the magnitude of the velocity 
vectors.  

 

Diffusion:  All fluids have some viscosity, which is a measure of how force inputs 
diffuse across the velocity field over time. This step simulates viscosity by 
applying a diffusion operator to the velocity field.  

 

Projection:  For incompressible fluids, the velocity field must remain non-divergent or 
mass conserving. Otherwise, portions of the fluid will disappear and the 
simulation will fail to produce correct results. This step forces the updated 
velocity field to be non-divergent. 

 

The operators (or kernels) used in these steps access data in local neighborhoods around 
each grid cell. As a result, the algorithms are highly data-parallel and therefore a good match 
for the CUDA programming model. We parallelize the fluid solver by executing blocks of 
hundreds of threads that span the computational domain, where each thread applies these 
operators to a small number of grid cells. We present details in a later section. 

In addition to presenting implementation details and kernel code, this sample 
provides examples of how to use several features of the CUDA runtime API, user libraries, 
and C language. These features, which are explained in detail in the CUDA Programming 
Guide, include: 

 

CUDA Texture references: Most of the kernels in this example access GPU 
memory through texture. In CUDA, this is done using the texture reference type. 
(For details, see sections 4.3.4 and 4.5.2.3 of the programming guide.) 

 

The CUDA Array type: The fluids solver computes results in a 2D grid. In many 
cases, it is fastest to use 2D Arrays for intermediate results because CUDA Arrays 



 Title of App Note 

    

 

 

September 2013 

abstract the GPU’s memory layout (with optimal 2D texture cache performance), 
while memory from cudaMalloc() is linear. (For details, see section 4.5.2.2 of the 
programming guide.) 

 

The CUFFT user library: This example implements the FFT-based version of the 
Stable Fluids algorithm. This approach performs velocity diffusion and mass 
conservation in the frequency domain, and we use the CUDA FFT library to 
perform Fourier transforms. (For details, see the CUFFT documentation.) 

 

The CUDA/OpenGL interoperability API: To display the fluid, we move 
particles using the fluid velocity field, and we draw the particles using simple GL 
calls. The interoperability API allows us to share memory between CUDA and 
OpenGL, so we can update the particle system using CUDA, and render from the 
same memory using OpenGL. (For details, see section 4.5.1.4 of the programming guide.)  
Note that the CUDA Developer SDK also includes “fluidsD3D”, a version of the 
fluids simulator that uses Direct3D for rendering and demonstrates the CUDA 
Direct3D interoperability API. 

Implementation 

This section describes in detail the CUDA C implementation of each kernel in the Stable 
fluids algorithm. As is typical for data-parallel algorithms over 2D grids, we execute blocks 
of threads in which each thread is responsible for all computation within a small region of 
the fluid domain. For this example, most kernels use the following tile and thread block 
configuration: 

 

Tile size: The fluid domain is divided into tiles of 64-by-64 cells. We tile the entire 
domain in this way, using partially full tiles if the domain dimensions don’t divide 
evenly by 64. 

Block size: 256 threads divided logically into 64 threads in x times 4 threads in y. 
The threads are distributed over the tile such that each thread computes results for a 
vertical column of 16 grid cells. 

 

This thread configuration gives us a high-performance balance between the number of 
threads per block, the maximum number of blocks per multiprocessor in the chip, and 
number of per thread resources (e.g. local registers) available. Figure 1 illustrates this 
block/thread configuration. Because it’s possible that some threads blocks will overlap the 
fluid domain (Figure 1 b), we use the CUDA C code in Listing 1 to check that each thread is 
inside the domain boundaries.  This code is used in all __global__ functions for the fluid 
solver, but the constant 16 may be replaced by a variable parameter if the tile size changes. 

 



 Title of App Note 

    

 

 

September 2013 

64 x 64 

tile

64 x 64 

tile

64 x 64 

tile

Fluid solver grid

64 threads each

64 x 64 

tile

64 x 64 

tile

64 x 64 

tile

64 x 64 

tile

64 x 64 

tile

64 x 64 

tile

a) b)  

Figure 1: Block diagram of the thread configuration used for all 

kernels in this sample. A) we use blocks of 64 x 4 threads, where 
each thread computes results for a vertical column of 16 grid cells. 
B) If the domain dimensions (dotted line) are not integer multiples 
of the tiles size, we overlap the domain with extra tiles. 

 

Listing 1: CUDA C code for testing whether a thread is inside the 
fluid domain. 

int gtidx = blockIdx.x * blockDim.x + threadIdx.x; 

int gtidy = blockIdx.y * (16 * blockDim.y) + threadIdx.y * 16; 

 

// gtidx is the domain location in x for this thread 

// dx is the domain size in x 

if (gtidx < dx) { 

    for (int p = 0; p < 16; p++) { 

        int fi = gtidy + p; 

        // fi is the domain location in y for this thread 

   // dy is the domain size in y 

        if (fi < dy) { 

       // Kernel for each step code goes here 

   } 

    } // For all cells in a vertical column of 16 

} // If this thread is inside the fluid domain 



 Title of App Note 

    

 

 

September 2013 

Add Forces 

We add forces to the velocity field by translating user mouse motion into 2D force vectors. 
We launch a single thread block on the GPU, and each thread in the block computes a force 
value based on the distance from the center cell. Threads at the far edges of the thread block 
tile add smaller force updates to the velocity than threads near the center grid cell. The 
following is CUDA C code for adding forces: 

 

 

 

Note that we use a pitch value in the calculation of the global thread position in the velocity 
field. This is necessary because the velocity memory is allocated using cudaMalloc2D (see 
section 4.5.2.2 of the CUDA Programming Guide for details). All remaining code examples in 
this document will use a pitch value when calculation global input and output addresses. 

Velocity Advection 

For velocity advection, we need to compute how the fluid velocity transports across grid 
cells. We use the implicit advection process proposed by Stam [1], and described in detail by 
Harris [2]. In this approach, we use the velocity vector at each grid cell to trace back in time 
to a previous cell, and we replace the starting grid cell velocity with this value from this 
previous location.      

// tx is the thread location in x 

// ty is the thread location in y 

// fj is the global thread position in the velocity array 

int tx = threadIdx.x; 

int ty = threadIdx.y; 

cData *fj = (cData*)((char*)v + (ty + spy) * pitch) + tx + spx; 

 

// We offset the local thread position by r, which is the     

// radius of the force thread block 

// cData is a float2 type 

cData vterm = *fj; 

tx -= r; ty -= r; 

// For smoothness, we compute a 1/(1 + x^4 + y^4) force falloff 

float s = 1.f / (1.f + tx*tx*tx*tx + ty*ty*ty*ty); 

vterm.x += s * fx; 

vterm.y += s * fy; 

*fj = vterm; 

  



 Title of App Note 

    

 

 

September 2013 

 

 

The second texture fetch in the code above uses bilinear interpolation to get a smooth value. 
The texture reference object is configured with this type of filtering so that we don’t have to 
manually interpolate velocity values in the CUDA C code and can take advantage of the 
GPU’s built-in texture filtering hardware. 

Velocity Diffusion and 
Projection  

This sample implements velocity diffusion and projection in a single kernel. We can do this 
because both operations are performed on velocity coefficients in the frequency domain. For 
this step we do the following: 

 

1. Forward FFT of the velocity field 

2. Frequency space diffusion to simulate viscosity and projection to make the velocity 
field non-divergent. 

3. Inverse FFT of the velocity coefficients. 

 

For both forward and inversion FFT we use CUFFT, the CUDA FFT library. See the 
CUFFT documentation for details on how to create and use CUFFT plans. It’s important to 
note that the current version of CUFFT only supports complex-to-complex transforms, 
while the velocity field is real-valued. Therefore, we allocate extra GPU memory to store 
complex-valued coefficients for the x and y velocity components.  

The differential operator for diffusion in the spatial domain is simply a convolution, which 
can be implemented as a point-wise multiplication in the frequency domain. Therefore, we 
can simulate fluid viscosity by scaling the velocity coefficients such that high frequency terms 
are forced smaller than low-frequency.  

cData vterm, ploc; 

int fj = fi * pdx + gtidx; 

// Fetch the velocity value at the grid cell for the thread   

// location (gridx, fi) 

vterm = texfetch(texref, (float)gtidx, (float)fi); 

// Trace the velocity vector backward to determine a new       

// location in the grid 

ploc.x = (gtidx + 0.5f) - (dt * vterm.x * dx); 

ploc.y = (fi + 0.5f) - (dt * vterm.y * dy); 

vterm = texfetch(texref, ploc.x, ploc.y); 

  



 Title of App Note 

    

 

 

September 2013 

 

 

Display 

Display of the fluid simulation is performed by rendering points in OpenGL.  The positions 
of the points are initially randomized throughout the domain, and at each time step, the 
velocity field is used to move the points forward.  To do this, 
cudaGLMapBufferObject()is used to map the vertex buffer object of point positions 
to a CUDA device memory pointer.  This allows it to be passed to a CUDA kernel which 
advects the point positions using the velocity field, as in the following code.  The vertex 
buffer object is then unmapped from the device pointer so that it can be used in normal 
OpenGL rendering using glDrawArrays(). 

int fj = fi * dx + gtidx; 

xterm = vx[fj]; 

yterm = vy[fj]; 

 

// Compute the index of the wavenumber based on the 

// data order produced by a standard NN FFT. 

int iix = gtidx; 

int iiy = (fi > dy / 2) ? (fi - (dy)) : fi;  

 

// Velocity diffusion 

float kk = (float)(iix * iix + iiy * iiy); // k^2  

float diff = 1.f / (1.f + visc * dt * kk); 

xterm.x *= diff; xterm.y *= diff; 

yterm.x *= diff; yterm.y *= diff; 

 

// Velocity projection 

if (kk > 0.f) { 

float rkk = 1.f / kk; 

      // Real portion of velocity projection 

      float rkp = (iix * xterm.x + iiy * yterm.x); 

      // Imaginary portion of velocity projection 

      float ikp = (iix * xterm.y + iiy * yterm.y); 

      xterm.x -= rkk * rkp * iix; 

      xterm.y -= rkk * ikp * iix; 

      yterm.x -= rkk * rkp * iiy; 

      yterm.y -= rkk * ikp * iiy; 

} 

                

vx[fj] = xterm; 

vy[fj] = yterm;  



 Title of App Note 

    

 

 

September 2013 

 

Bibliography 

1. Stam, J. 1999. “Stable Fluids.” In Proceedings of SIGGRAPH 1999. 
http://www.dgp.toronto.edu/people/stam/reality/Research/pdf/ns.pdf 
 

2. Harris, Mark J. Fast Fluid Dynamics Simulation on the GPU. In GPU Gems, R. 
Fernando, Ed., ch. 38, pp. 637–665. Addison Wesley, 2004 
http://developer.nvidia.com/object/gpu_gems_home.html 

 

int fj = fi * dx + gtidx; 

pterm = part[fj]; 

 

int xvi = ((int)(pterm.x * dx)); 

int yvi = ((int)(pterm.y * dy)); 

vterm = *((cData*)((char*)v + yvi * pitch) + xvi);    

  

pterm.x += dt * vterm.x; 

pterm.x = pterm.x - (int)pterm.x;             

pterm.x += 1.f;  

pterm.x = pterm.x - (int)pterm.x;               

pterm.y += dt * vterm.y; 

pterm.y = pterm.y - (int)pterm.y;             

pterm.y += 1.f;  

pterm.y = pterm.y - (int)pterm.y;                   

 

part[fj] = pterm;  

http://www.dgp.toronto.edu/people/stam/reality/Research/pdf/ns.pdf
http://developer.nvidia.com/object/gpu_gems_home.html


 

NVIDIA Corporation 
2701 San Tomas Expressway 

Santa Clara, CA 95050 
www.nvidia.com 

Notice 

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND 
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA 
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE 
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, 
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. 

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no 
responsibility for the consequences of use of such information or for any infringement of patents or other 
rights of third parties that may result from its use. No license is granted by implication or otherwise under any 
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to 
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA 
Corporation products are not authorized for use as critical components in life support devices or systems 
without express written approval of NVIDIA Corporation. 

 

Trademarks 

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or 
registered trademarks of NVIDIA Corporation in the United States and other countries. Other 
company and product names may be trademarks of the respective companies with which they 
are associated. 

 

Copyright 

© 2007-2013 NVIDIA Corporation. All rights reserved.  


