# cuDLALayerwiseStatsStandalone - cuDLA Layerwise Statistics Standalone Mode ## Description This sample is used to provide layerwise statistics to the application in cuDLA standalone mode where DLA is programmed without using CUDA. ## Key Concepts cuDLA, Data Parallel Algorithms, Image Processing ## Supported SM Architectures [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus) [SM 8.6 ](https://developer.nvidia.com/cuda-gpus) [SM 8.7 ](https://developer.nvidia.com/cuda-gpus) [SM 8.9 ](https://developer.nvidia.com/cuda-gpus) [SM 9.0 ](https://developer.nvidia.com/cuda-gpus) ## Supported OSes Linux, QNX ## Supported CPU Architecture aarch64 ## CUDA APIs involved ## Dependencies needed to build/run [NVSCI](../../../README.md#nvsci) ## Prerequisites Download and install the [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads) for your corresponding platform. Make sure the dependencies mentioned in [Dependencies]() section above are installed. ## References (for more details)