# cuDLALayerwiseStatsHybrid - cuDLA Layerwise statistics HybridMode ## Description This sample is used to provide layerwise statistics to the application in the cuDLA hybrid mode wherein DLA is programmed using CUDA. ## Key Concepts cuDLA, Data Parallel Algorithms, Image Processing ## Supported SM Architectures [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus) [SM 8.6 ](https://developer.nvidia.com/cuda-gpus) [SM 8.7 ](https://developer.nvidia.com/cuda-gpus) [SM 8.9 ](https://developer.nvidia.com/cuda-gpus) [SM 9.0 ](https://developer.nvidia.com/cuda-gpus) ## Supported OSes Linux, QNX ## Supported CPU Architecture aarch64 ## CUDA APIs involved ### [CUDA Runtime API](http://docs.nvidia.com/cuda/cuda-runtime-api/index.html) cudaStreamCreateWithFlags, cudaStreamDestroy, cudaFree, cudaGetErrorName, cudaSetDevice, cudaStreamSynchronize, cudaMalloc, cudaMemsetAsync, cudaMemcpyAsync ## Prerequisites Download and install the [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads) for your corresponding platform. ## References (for more details)