/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** ************************************************************************** * \file dct8x8_kernel2.cu * \brief Contains 2nd kernel implementations of DCT and IDCT routines, used in * JPEG internal data processing. Optimized device code. * * This code implements traditional approach to forward and inverse Discrete * Cosine Transform to blocks of image pixels (of 8x8 size), as in JPEG standard. * The data processing is done using floating point representation. * The routine that performs quantization of coefficients can be found in * dct8x8_kernel_quantization.cu file. */ #pragma once #include namespace cg = cooperative_groups; #include "Common.h" // Used in forward and inverse DCT #define C_a 1.387039845322148f //!< a = (2^0.5) * cos( pi / 16); #define C_b 1.306562964876377f //!< b = (2^0.5) * cos( pi / 8); #define C_c 1.175875602419359f //!< c = (2^0.5) * cos(3 * pi / 16); #define C_d 0.785694958387102f //!< d = (2^0.5) * cos(5 * pi / 16); #define C_e 0.541196100146197f //!< e = (2^0.5) * cos(3 * pi / 8); #define C_f 0.275899379282943f //!< f = (2^0.5) * cos(7 * pi / 16); /** * Normalization constant that is used in forward and inverse DCT */ #define C_norm 0.3535533905932737f // 1 / (8^0.5) /** * Width of data block (2nd kernel) */ #define KER2_BLOCK_WIDTH 32 /** * Height of data block (2nd kernel) */ #define KER2_BLOCK_HEIGHT 16 /** * LOG2 of width of data block (2nd kernel) */ #define KER2_BW_LOG2 5 /** * LOG2 of height of data block (2nd kernel) */ #define KER2_BH_LOG2 4 /** * Stride of shared memory buffer (2nd kernel) */ #define KER2_SMEMBLOCK_STRIDE (KER2_BLOCK_WIDTH + 1) /** ************************************************************************** * Performs in-place DCT of vector of 8 elements. * * \param Vect0 [IN/OUT] - Pointer to the first element of vector * \param Step [IN/OUT] - Value to add to ptr to access other elements * * \return None */ __device__ void CUDAsubroutineInplaceDCTvector(float *Vect0, int Step) { float *Vect1 = Vect0 + Step; float *Vect2 = Vect1 + Step; float *Vect3 = Vect2 + Step; float *Vect4 = Vect3 + Step; float *Vect5 = Vect4 + Step; float *Vect6 = Vect5 + Step; float *Vect7 = Vect6 + Step; float X07P = (*Vect0) + (*Vect7); float X16P = (*Vect1) + (*Vect6); float X25P = (*Vect2) + (*Vect5); float X34P = (*Vect3) + (*Vect4); float X07M = (*Vect0) - (*Vect7); float X61M = (*Vect6) - (*Vect1); float X25M = (*Vect2) - (*Vect5); float X43M = (*Vect4) - (*Vect3); float X07P34PP = X07P + X34P; float X07P34PM = X07P - X34P; float X16P25PP = X16P + X25P; float X16P25PM = X16P - X25P; (*Vect0) = C_norm * (X07P34PP + X16P25PP); (*Vect2) = C_norm * (C_b * X07P34PM + C_e * X16P25PM); (*Vect4) = C_norm * (X07P34PP - X16P25PP); (*Vect6) = C_norm * (C_e * X07P34PM - C_b * X16P25PM); (*Vect1) = C_norm * (C_a * X07M - C_c * X61M + C_d * X25M - C_f * X43M); (*Vect3) = C_norm * (C_c * X07M + C_f * X61M - C_a * X25M + C_d * X43M); (*Vect5) = C_norm * (C_d * X07M + C_a * X61M + C_f * X25M - C_c * X43M); (*Vect7) = C_norm * (C_f * X07M + C_d * X61M + C_c * X25M + C_a * X43M); } /** ************************************************************************** * Performs in-place IDCT of vector of 8 elements. * * \param Vect0 [IN/OUT] - Pointer to the first element of vector * \param Step [IN/OUT] - Value to add to ptr to access other elements * * \return None */ __device__ void CUDAsubroutineInplaceIDCTvector(float *Vect0, int Step) { float *Vect1 = Vect0 + Step; float *Vect2 = Vect1 + Step; float *Vect3 = Vect2 + Step; float *Vect4 = Vect3 + Step; float *Vect5 = Vect4 + Step; float *Vect6 = Vect5 + Step; float *Vect7 = Vect6 + Step; float Y04P = (*Vect0) + (*Vect4); float Y2b6eP = C_b * (*Vect2) + C_e * (*Vect6); float Y04P2b6ePP = Y04P + Y2b6eP; float Y04P2b6ePM = Y04P - Y2b6eP; float Y7f1aP3c5dPP = C_f * (*Vect7) + C_a * (*Vect1) + C_c * (*Vect3) + C_d * (*Vect5); float Y7a1fM3d5cMP = C_a * (*Vect7) - C_f * (*Vect1) + C_d * (*Vect3) - C_c * (*Vect5); float Y04M = (*Vect0) - (*Vect4); float Y2e6bM = C_e * (*Vect2) - C_b * (*Vect6); float Y04M2e6bMP = Y04M + Y2e6bM; float Y04M2e6bMM = Y04M - Y2e6bM; float Y1c7dM3f5aPM = C_c * (*Vect1) - C_d * (*Vect7) - C_f * (*Vect3) - C_a * (*Vect5); float Y1d7cP3a5fMM = C_d * (*Vect1) + C_c * (*Vect7) - C_a * (*Vect3) + C_f * (*Vect5); (*Vect0) = C_norm * (Y04P2b6ePP + Y7f1aP3c5dPP); (*Vect7) = C_norm * (Y04P2b6ePP - Y7f1aP3c5dPP); (*Vect4) = C_norm * (Y04P2b6ePM + Y7a1fM3d5cMP); (*Vect3) = C_norm * (Y04P2b6ePM - Y7a1fM3d5cMP); (*Vect1) = C_norm * (Y04M2e6bMP + Y1c7dM3f5aPM); (*Vect5) = C_norm * (Y04M2e6bMM - Y1d7cP3a5fMM); (*Vect2) = C_norm * (Y04M2e6bMM + Y1d7cP3a5fMM); (*Vect6) = C_norm * (Y04M2e6bMP - Y1c7dM3f5aPM); } /** ************************************************************************** * Performs 8x8 block-wise Forward Discrete Cosine Transform of the given * image plane and outputs result to the array of coefficients. 2nd *implementation. * This kernel is designed to process image by blocks of blocks8x8 that * utilizes maximum warps capacity, assuming that it is enough of 8 threads * per block8x8. * * \param SrcDst [OUT] - Coefficients plane * \param ImgStride [IN] - Stride of SrcDst * * \return None */ __global__ void CUDAkernel2DCT(float *dst, float *src, int ImgStride) { // Handle to thread block group cg::thread_block cta = cg::this_thread_block(); __shared__ float block[KER2_BLOCK_HEIGHT * KER2_SMEMBLOCK_STRIDE]; int OffsThreadInRow = threadIdx.y * BLOCK_SIZE + threadIdx.x; int OffsThreadInCol = threadIdx.z * BLOCK_SIZE; src += FMUL(blockIdx.y * KER2_BLOCK_HEIGHT + OffsThreadInCol, ImgStride) + blockIdx.x * KER2_BLOCK_WIDTH + OffsThreadInRow; dst += FMUL(blockIdx.y * KER2_BLOCK_HEIGHT + OffsThreadInCol, ImgStride) + blockIdx.x * KER2_BLOCK_WIDTH + OffsThreadInRow; float *bl_ptr = block + OffsThreadInCol * KER2_SMEMBLOCK_STRIDE + OffsThreadInRow; #pragma unroll for (unsigned int i = 0; i < BLOCK_SIZE; i++) bl_ptr[i * KER2_SMEMBLOCK_STRIDE] = src[i * ImgStride]; cg::sync(cta); // process rows CUDAsubroutineInplaceDCTvector( block + (OffsThreadInCol + threadIdx.x) * KER2_SMEMBLOCK_STRIDE + OffsThreadInRow - threadIdx.x, 1); cg::sync(cta); // process columns CUDAsubroutineInplaceDCTvector(bl_ptr, KER2_SMEMBLOCK_STRIDE); cg::sync(cta); for (unsigned int i = 0; i < BLOCK_SIZE; i++) dst[i * ImgStride] = bl_ptr[i * KER2_SMEMBLOCK_STRIDE]; } /** ************************************************************************** * Performs 8x8 block-wise Inverse Discrete Cosine Transform of the given * coefficients plane and outputs result to the image. 2nd implementation. * This kernel is designed to process image by blocks of blocks8x8 that * utilizes maximum warps capacity, assuming that it is enough of 8 threads * per block8x8. * * \param SrcDst [OUT] - Coefficients plane * \param ImgStride [IN] - Stride of SrcDst * * \return None */ __global__ void CUDAkernel2IDCT(float *dst, float *src, int ImgStride) { // Handle to thread block group cg::thread_block cta = cg::this_thread_block(); __shared__ float block[KER2_BLOCK_HEIGHT * KER2_SMEMBLOCK_STRIDE]; int OffsThreadInRow = threadIdx.y * BLOCK_SIZE + threadIdx.x; int OffsThreadInCol = threadIdx.z * BLOCK_SIZE; src += FMUL(blockIdx.y * KER2_BLOCK_HEIGHT + OffsThreadInCol, ImgStride) + blockIdx.x * KER2_BLOCK_WIDTH + OffsThreadInRow; dst += FMUL(blockIdx.y * KER2_BLOCK_HEIGHT + OffsThreadInCol, ImgStride) + blockIdx.x * KER2_BLOCK_WIDTH + OffsThreadInRow; float *bl_ptr = block + OffsThreadInCol * KER2_SMEMBLOCK_STRIDE + OffsThreadInRow; #pragma unroll for (unsigned int i = 0; i < BLOCK_SIZE; i++) bl_ptr[i * KER2_SMEMBLOCK_STRIDE] = src[i * ImgStride]; cg::sync(cta); // process rows CUDAsubroutineInplaceIDCTvector( block + (OffsThreadInCol + threadIdx.x) * KER2_SMEMBLOCK_STRIDE + OffsThreadInRow - threadIdx.x, 1); cg::sync(cta); // process columns CUDAsubroutineInplaceIDCTvector(bl_ptr, KER2_SMEMBLOCK_STRIDE); cg::sync(cta); for (unsigned int i = 0; i < BLOCK_SIZE; i++) dst[i * ImgStride] = bl_ptr[i * KER2_SMEMBLOCK_STRIDE]; }