/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* This example demonstrates how to use the CUBLAS library * by scaling an array of floating-point values on the device * and comparing the result to the same operation performed * on the host. */ /* Includes, system */ #include #include #include /* Includes, cuda */ #include #include #include /* Matrix size */ //#define N (275) #define N (1024) // Restricting the max used GPUs as input matrix is not so large #define MAX_NUM_OF_GPUS 2 /* Host implementation of a simple version of sgemm */ static void simple_sgemm(int n, float alpha, const float *A, const float *B, float beta, float *C) { int i; int j; int k; for (i = 0; i < n; ++i) { for (j = 0; j < n; ++j) { float prod = 0; for (k = 0; k < n; ++k) { prod += A[k * n + i] * B[j * n + k]; } C[j * n + i] = alpha * prod + beta * C[j * n + i]; } } } void findMultipleBestGPUs(int &num_of_devices, int *device_ids) { // Find the best CUDA capable GPU device int current_device = 0; int device_count; checkCudaErrors(cudaGetDeviceCount(&device_count)); typedef struct gpu_perf_t { uint64_t compute_perf; int device_id; } gpu_perf; gpu_perf *gpu_stats = (gpu_perf *)malloc(sizeof(gpu_perf) * device_count); cudaDeviceProp deviceProp; int devices_prohibited = 0; while (current_device < device_count) { cudaGetDeviceProperties(&deviceProp, current_device); // If this GPU is not running on Compute Mode prohibited, // then we can add it to the list int sm_per_multiproc; if (deviceProp.computeMode != cudaComputeModeProhibited) { if (deviceProp.major == 9999 && deviceProp.minor == 9999) { sm_per_multiproc = 1; } else { sm_per_multiproc = _ConvertSMVer2Cores(deviceProp.major, deviceProp.minor); } gpu_stats[current_device].compute_perf = (uint64_t)deviceProp.multiProcessorCount * sm_per_multiproc * deviceProp.clockRate; gpu_stats[current_device].device_id = current_device; } else { devices_prohibited++; } ++current_device; } if (devices_prohibited == device_count) { fprintf(stderr, "gpuGetMaxGflopsDeviceId() CUDA error:" " all devices have compute mode prohibited.\n"); exit(EXIT_FAILURE); } else { gpu_perf temp_elem; // Sort the GPUs by highest compute perf. for (int i = 0; i < current_device - 1; i++) { for (int j = 0; j < current_device - i - 1; j++) { if (gpu_stats[j].compute_perf < gpu_stats[j + 1].compute_perf) { temp_elem = gpu_stats[j]; gpu_stats[j] = gpu_stats[j + 1]; gpu_stats[j + 1] = temp_elem; } } } for (int i = 0; i < num_of_devices; i++) { device_ids[i] = gpu_stats[i].device_id; } } free(gpu_stats); } /* Main */ int main(int argc, char **argv) { cublasStatus_t status; float *h_A; float *h_B; float *h_C; float *h_C_ref; float *d_A = 0; float *d_B = 0; float *d_C = 0; float alpha = 1.0f; float beta = 0.0f; int n2 = N * N; int i; float error_norm; float ref_norm; float diff; cublasXtHandle_t handle; int *devices = NULL; int num_of_devices = 0; checkCudaErrors(cudaGetDeviceCount(&num_of_devices)); if (num_of_devices > MAX_NUM_OF_GPUS) { num_of_devices = MAX_NUM_OF_GPUS; } devices = (int *)malloc(sizeof(int) * num_of_devices); findMultipleBestGPUs(num_of_devices, devices); cudaDeviceProp deviceProp; printf("Using %d GPUs\n", num_of_devices); for (i = 0; i < num_of_devices; i++) { checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devices[i])); printf("GPU ID = %d, Name = %s \n", devices[i], deviceProp.name); } /* Initialize CUBLAS */ printf("simpleCUBLASXT test running..\n"); status = cublasXtCreate(&handle); if (status != CUBLAS_STATUS_SUCCESS) { fprintf(stderr, "!!!! CUBLASXT initialization error\n"); return EXIT_FAILURE; } /* Select devices for use in CUBLASXT math functions */ status = cublasXtDeviceSelect(handle, num_of_devices, devices); if (status != CUBLAS_STATUS_SUCCESS) { fprintf(stderr, "!!!! CUBLASXT device selection error\n"); return EXIT_FAILURE; } /* Optional: Set a block size for CUBLASXT math functions */ status = cublasXtSetBlockDim(handle, 64); if (status != CUBLAS_STATUS_SUCCESS) { fprintf(stderr, "!!!! CUBLASXT set block dimension error\n"); return EXIT_FAILURE; } /* Allocate host memory for the matrices */ h_A = (float *)malloc(n2 * sizeof(h_A[0])); if (h_A == 0) { fprintf(stderr, "!!!! host memory allocation error (A)\n"); return EXIT_FAILURE; } h_B = (float *)malloc(n2 * sizeof(h_B[0])); if (h_B == 0) { fprintf(stderr, "!!!! host memory allocation error (B)\n"); return EXIT_FAILURE; } h_C_ref = (float *)malloc(n2 * sizeof(h_C[0])); if (h_C_ref == 0) { fprintf(stderr, "!!!! host memory allocation error (C_ref)\n"); return EXIT_FAILURE; } h_C = (float *)malloc(n2 * sizeof(h_C[0])); if (h_C == 0) { fprintf(stderr, "!!!! host memory allocation error (C)\n"); return EXIT_FAILURE; } /* Fill the matrices with test data */ for (i = 0; i < n2; i++) { h_A[i] = rand() / (float)RAND_MAX; h_B[i] = rand() / (float)RAND_MAX; h_C[i] = rand() / (float)RAND_MAX; h_C_ref[i] = h_C[i]; } /* Performs operation using plain C code */ simple_sgemm(N, alpha, h_A, h_B, beta, h_C_ref); /* Performs operation using cublas */ status = cublasXtSgemm(handle, CUBLAS_OP_N, CUBLAS_OP_N, N, N, N, &alpha, h_A, N, h_B, N, &beta, h_C, N); if (status != CUBLAS_STATUS_SUCCESS) { fprintf(stderr, "!!!! kernel execution error.\n"); return EXIT_FAILURE; } /* Check result against reference */ error_norm = 0; ref_norm = 0; for (i = 0; i < n2; ++i) { diff = h_C_ref[i] - h_C[i]; error_norm += diff * diff; ref_norm += h_C_ref[i] * h_C_ref[i]; } error_norm = (float)sqrt((double)error_norm); ref_norm = (float)sqrt((double)ref_norm); if (fabs(ref_norm) < 1e-7) { fprintf(stderr, "!!!! reference norm is 0\n"); return EXIT_FAILURE; } /* Memory clean up */ free(h_A); free(h_B); free(h_C); free(h_C_ref); if (cudaFree(d_A) != cudaSuccess) { fprintf(stderr, "!!!! memory free error (A)\n"); return EXIT_FAILURE; } if (cudaFree(d_B) != cudaSuccess) { fprintf(stderr, "!!!! memory free error (B)\n"); return EXIT_FAILURE; } if (cudaFree(d_C) != cudaSuccess) { fprintf(stderr, "!!!! memory free error (C)\n"); return EXIT_FAILURE; } /* Shutdown */ status = cublasXtDestroy(handle); if (status != CUBLAS_STATUS_SUCCESS) { fprintf(stderr, "!!!! shutdown error (A)\n"); return EXIT_FAILURE; } if (error_norm / ref_norm < 1e-6f) { printf("simpleCUBLASXT test passed.\n"); exit(EXIT_SUCCESS); } else { printf("simpleCUBLASXT test failed.\n"); exit(EXIT_FAILURE); } }