/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // System includes #include #include // CUDA runtime #include // helper functions and utilities to work with CUDA #include #include #ifndef MAX #define MAX(a, b) (a > b ? a : b) #endif static const char *sSDKsample = "[simpleVoteIntrinsics]\0"; //////////////////////////////////////////////////////////////////////////////// // Global types and parameters //////////////////////////////////////////////////////////////////////////////// #define VOTE_DATA_GROUP 4 //////////////////////////////////////////////////////////////////////////////// // CUDA Voting Kernel functions //////////////////////////////////////////////////////////////////////////////// #include "simpleVote_kernel.cuh" // Generate the test pattern for Tests 1 and 2 void genVoteTestPattern(unsigned int *VOTE_PATTERN, int size) { // For testing VOTE.Any (all of these threads will return 0) for (int i = 0; i < size / 4; i++) { VOTE_PATTERN[i] = 0x00000000; } // For testing VOTE.Any (1/2 these threads will return 1) for (int i = 2 * size / 8; i < 4 * size / 8; i++) { VOTE_PATTERN[i] = (i & 0x01) ? i : 0; } // For testing VOTE.all (1/2 of these threads will return 0) for (int i = 2 * size / 4; i < 3 * size / 4; i++) { VOTE_PATTERN[i] = (i & 0x01) ? 0 : i; } // For testing VOTE.all (all of these threads will return 1) for (int i = 3 * size / 4; i < 4 * size / 4; i++) { VOTE_PATTERN[i] = 0xffffffff; } } int checkErrors1(unsigned int *h_result, int start, int end, int warp_size, const char *voteType) { int i, sum = 0; for (sum = 0, i = start; i < end; i++) { sum += h_result[i]; } if (sum > 0) { printf("\t<%s>[%d - %d] = ", voteType, start, end - 1); for (i = start; i < end; i++) { printf("%d", h_result[i]); } printf("%d values FAILED\n", sum); } return (sum > 0); } int checkErrors2(unsigned int *h_result, int start, int end, int warp_size, const char *voteType) { int i, sum = 0; for (sum = 0, i = start; i < end; i++) { sum += h_result[i]; } if (sum != warp_size) { printf("\t<%s>[%d - %d] = ", voteType, start, end - 1); for (i = start; i < end; i++) { printf("%d", h_result[i]); } printf(" - FAILED\n"); } return (sum != warp_size); } // Verification code for Kernel #1 int checkResultsVoteAnyKernel1(unsigned int *h_result, int size, int warp_size) { int error_count = 0; error_count += checkErrors1(h_result, 0, VOTE_DATA_GROUP * warp_size / 4, warp_size, "Vote.Any"); error_count += checkErrors2(h_result, VOTE_DATA_GROUP * warp_size / 4, 2 * VOTE_DATA_GROUP * warp_size / 4, warp_size, "Vote.Any"); error_count += checkErrors2(h_result, 2 * VOTE_DATA_GROUP * warp_size / 4, 3 * VOTE_DATA_GROUP * warp_size / 4, warp_size, "Vote.Any"); error_count += checkErrors2(h_result, 3 * VOTE_DATA_GROUP * warp_size / 4, 4 * VOTE_DATA_GROUP * warp_size / 4, warp_size, "Vote.Any"); printf((error_count == 0) ? "\tOK\n" : "\tERROR\n"); return error_count; } // Verification code for Kernel #2 int checkResultsVoteAllKernel2(unsigned int *h_result, int size, int warp_size) { int error_count = 0; error_count += checkErrors1(h_result, 0, VOTE_DATA_GROUP * warp_size / 4, warp_size, "Vote.All"); error_count += checkErrors1(h_result, VOTE_DATA_GROUP * warp_size / 4, 2 * VOTE_DATA_GROUP * warp_size / 4, warp_size, "Vote.All"); error_count += checkErrors1(h_result, 2 * VOTE_DATA_GROUP * warp_size / 4, 3 * VOTE_DATA_GROUP * warp_size / 4, warp_size, "Vote.All"); error_count += checkErrors2(h_result, 3 * VOTE_DATA_GROUP * warp_size / 4, 4 * VOTE_DATA_GROUP * warp_size / 4, warp_size, "Vote.All"); printf((error_count == 0) ? "\tOK\n" : "\tERROR\n"); return error_count; } // Verification code for Kernel #3 int checkResultsVoteAnyKernel3(bool *hinfo, int size) { int i, error_count = 0; for (i = 0; i < size * 3; i++) { switch (i % 3) { case 0: // First warp should be all zeros. if (hinfo[i] != (i >= size * 1)) { error_count++; } break; case 1: // First warp and half of second should be all zeros. if (hinfo[i] != (i >= size * 3 / 2)) { error_count++; } break; case 2: // First two warps should be all zeros. if (hinfo[i] != (i >= size * 2)) { error_count++; } break; } } printf((error_count == 0) ? "\tOK\n" : "\tERROR\n"); return error_count; } int main(int argc, char **argv) { unsigned int *h_input, *h_result; unsigned int *d_input, *d_result; bool *dinfo = NULL, *hinfo = NULL; int error_count[3] = {0, 0, 0}; cudaDeviceProp deviceProp; int devID, warp_size = 32; printf("%s\n", sSDKsample); // This will pick the best possible CUDA capable device devID = findCudaDevice(argc, (const char **)argv); checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID)); // Statistics about the GPU device printf( "> GPU device has %d Multi-Processors, SM %d.%d compute capabilities\n\n", deviceProp.multiProcessorCount, deviceProp.major, deviceProp.minor); h_input = (unsigned int *)malloc(VOTE_DATA_GROUP * warp_size * sizeof(unsigned int)); h_result = (unsigned int *)malloc(VOTE_DATA_GROUP * warp_size * sizeof(unsigned int)); checkCudaErrors( cudaMalloc(reinterpret_cast(&d_input), VOTE_DATA_GROUP * warp_size * sizeof(unsigned int))); checkCudaErrors( cudaMalloc(reinterpret_cast(&d_result), VOTE_DATA_GROUP * warp_size * sizeof(unsigned int))); genVoteTestPattern(h_input, VOTE_DATA_GROUP * warp_size); checkCudaErrors(cudaMemcpy(d_input, h_input, VOTE_DATA_GROUP * warp_size * sizeof(unsigned int), cudaMemcpyHostToDevice)); // Start of Vote Any Test Kernel #1 printf("[VOTE Kernel Test 1/3]\n"); printf("\tRunning <> kernel1 ...\n"); { checkCudaErrors(cudaDeviceSynchronize()); dim3 gridBlock(1, 1); dim3 threadBlock(VOTE_DATA_GROUP * warp_size, 1); VoteAnyKernel1<<>>(d_input, d_result, VOTE_DATA_GROUP * warp_size); getLastCudaError("VoteAnyKernel() execution failed\n"); checkCudaErrors(cudaDeviceSynchronize()); } checkCudaErrors(cudaMemcpy(h_result, d_result, VOTE_DATA_GROUP * warp_size * sizeof(unsigned int), cudaMemcpyDeviceToHost)); error_count[0] += checkResultsVoteAnyKernel1( h_result, VOTE_DATA_GROUP * warp_size, warp_size); // Start of Vote All Test Kernel #2 printf("\n[VOTE Kernel Test 2/3]\n"); printf("\tRunning <> kernel2 ...\n"); { checkCudaErrors(cudaDeviceSynchronize()); dim3 gridBlock(1, 1); dim3 threadBlock(VOTE_DATA_GROUP * warp_size, 1); VoteAllKernel2<<>>(d_input, d_result, VOTE_DATA_GROUP * warp_size); getLastCudaError("VoteAllKernel() execution failed\n"); checkCudaErrors(cudaDeviceSynchronize()); } checkCudaErrors(cudaMemcpy(h_result, d_result, VOTE_DATA_GROUP * warp_size * sizeof(unsigned int), cudaMemcpyDeviceToHost)); error_count[1] += checkResultsVoteAllKernel2( h_result, VOTE_DATA_GROUP * warp_size, warp_size); // Second Vote Kernel Test #3 (both Any/All) hinfo = reinterpret_cast(calloc(warp_size * 3 * 3, sizeof(bool))); cudaMalloc(reinterpret_cast(&dinfo), warp_size * 3 * 3 * sizeof(bool)); cudaMemcpy(dinfo, hinfo, warp_size * 3 * 3 * sizeof(bool), cudaMemcpyHostToDevice); printf("\n[VOTE Kernel Test 3/3]\n"); printf("\tRunning <> kernel3 ...\n"); { checkCudaErrors(cudaDeviceSynchronize()); VoteAnyKernel3<<<1, warp_size * 3>>>(dinfo, warp_size); checkCudaErrors(cudaDeviceSynchronize()); } cudaMemcpy(hinfo, dinfo, warp_size * 3 * 3 * sizeof(bool), cudaMemcpyDeviceToHost); error_count[2] = checkResultsVoteAnyKernel3(hinfo, warp_size * 3); // Now free these resources for Test #1,2 checkCudaErrors(cudaFree(d_input)); checkCudaErrors(cudaFree(d_result)); free(h_input); free(h_result); // Free resources from Test #3 free(hinfo); cudaFree(dinfo); printf("\tShutting down...\n"); return (error_count[0] == 0 && error_count[1] == 0 && error_count[2] == 0) ? EXIT_SUCCESS : EXIT_FAILURE; }