

September 2013

Histogram
calculation in
CUDA

Victor Podlozhnyuk
vpodlozhnyuk@nvidia.com

September 2013

Document Change History

Version Date Responsible Reason for Change

1.0 06/15/2007 vpodlozhnyuk First draft of histogram256 whitepaper

1.1.0 11/06/2007 vpodlozhnyuk Merge histogram256 & histogram64 whitepapers

1.1.1 11/09/2007 Ignacio Castano Edit and proofread

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

 Abstract

Histograms are a commonly used analysis tool in image processing and data mining
applications. They show the frequency of occurrence of each data element.

Although trivial to compute on the CPU, histograms are traditionally quite difficult to
compute efficiently on the GPU. Previously proposed methods include using the occlusion
query mechanism (which requires a rendering pass for each histogram bucket), or sorting the
pixels of the image and then searching for the start of each bucket, both of which are quite
expensive.

We can use CUDA and the shared memory to efficiently produce histograms, which can
then either be read back to the host or kept on the GPU for later use. The two CUDA SDK
samples: histogram64 and histogram256 demonstrate different approaches to efficient
histogram computation on GPU using CUDA.

September 2013

Introduction

Amplitude

Number

of Pixels

Figure 1: An example of an image histogram

An image histogram shows the distribution of pixel intensities within an image.
Figure 1 is an example of an image histogram with amplitude (or color) on the horizontal
axis and pixel count on the vertical axis.

Histogram64 demonstrates a simple and high-performance implementation of a
64-bin histogram. Due to the current hardware resource limitations, its approach cannot be
scaled to higher resolutions. 64-bin are enough for many applications, but it’s not well suited
for many image processing applications, like for example histogram equalization.

Histogram256 demonstrates an efficient implementation of a 256-bin histogram,
which makes it suitable for image processing applications that require higher precision than
64 bins can provide.

September 2013

Overview

Calculating an image histogram on a sequential device with single thread of execution is
fairly easy:

 Listing 1. Histogram calculation on a single-threaded device. (pseudocode)

Distribution of the computation process between multiple execution threads is possible.
It amounts to:

1) Subdivision of the input data array between execution threads

2) Processing of the sub-arrays by each dedicated execution thread and storing the result
into a certain number of sub histograms. In some cases it may also be possible to reduce the
number of histograms by using atomic operations, but resolving collisions between threads
may turn out to be more expensive.

3) Finally all the sub-histograms need to be merged into a single histogram.

When adapting this algorithm to the GPU several constraints should be kept in mind:

Access to the data[] array is sequential, but access to result[] array is data-
dependent (random). Due to inherent performance difference between shared and device
memory, especially on random patterns, shared memory is the most optimal storage for the
result[] array.

On G8x hardware, the total size of the shared memory variables is limited by 16KB.

A single thread block should contain 128-256 threads for efficient execution.

G8x hardware does not have native support for atomic shared memory operations.

An immediate deduction from point 3 is to follow “one scalar thread per sub-histogram”
tactic, implemented in histogram64 CUDA SDK sample. It has obvious limitations: 16
KB per average 192 threads per block amount to max. 85 bytes per thread. So at a
maximum, per-thread sub-histograms with up to 64 single-byte bin counters can fit into
shared memory with this approach. Byte counters also introduce 255-byte limit to the data
size processed by single execution thread, which must be taken into account during data
subdivision between the execution threads.

However, since the hardware executes threads in SIMD-groups, called warps (32 threads on
G80), we can take advantage of this important property for manual (software)
implementation of atomic shared memory operations. With this approach, implemented in
histogram256 CUDA SDK sample, we store per-warp sub-histograms, greatly relieving
shared memory size pressure: 6 warps (192 threads) * 256 counters * 4 bytes per counter ==
6KB

Implementation details as well as benefits and disadvantages of these two approaches are
described in the following sections.

for(int i = 0; i < BIN_COUNT; i++)

 result[i] = 0;

for(int i = 0; i < dataN; i++)

 result[data[i]]++;

September 2013

Implementation of histogram64

The per-block sub-histogram is stored in shared memory in the s_Hist[] array.
s_Hist[]is a 2D byte array with BIN_COUNT rows and THREAD_N columns as shown in
Figure 1. Although it is stored in fast on-chip shared memory, a bank-conflict-free access
pattern needs to be ensured for best performance, if possible.

THREAD_N

...

...

threadPos

B
IN

_
C

O
U

N
T

...

...

...

...

...

...

...

threadIdx.x

...

...

...

...

...

...

...

...

...

...
data

data

...

Figure 1. s_Hist[] array layout for histogram64.

For each thread with its own threadPos and data value (which may be the same for some
other threads in the thread block), the shared memory bank number is equal to
(threadPos + data * THREAD_N) / 4) % 16. (See section 5.1.2.4 of the
Programming Guide.)

If THREAD_N is a multiple of 64, the expression reduces to (threadPos / 4) % 16,
which is independent of data value. (threadPos / 4) % 16 is equal to the [5 : 2] bits
of threadPos. A half-warp can be defined as a group of threads in which all threads have
the same upper bits [31 : 4] of threadIdx.x, but any combination of bits [3 : 0].

If we just set threadPos equal to threadIdx.x, all thread within a half-warp will access
its own byte “lane”, but these lanes will map to only 4 banks, thus introducing 4-way bank

September 2013

conflicts. However, shuffling the [5 : 4] and [3 : 0] bit ranges of threadIdx.x will cause all
threads within each warp to access the same byte within 4-byte words, stored in 16 different
banks, thus completely avoiding bank conflicts.

Since G8x can efficiently work with arrays of only 4, 8 and 16 bytes per element, input data
is loaded as four-byte words. For the reasons mentioned above, the data size processed by
each thread is limited to 255 bytes or 63 4-byte words, and the data size processed by the
entire thread block is limited to THREAD_N * 63 words. (48,384 bytes for 192 threads)

Bank 0 Bank 1 Bank 15 Bank 0

tid == 0

tid == 1

tid == 16

tid == 15

...

...

...

... ...
...

...

...

...

...

tid == 17 ...

B
IN

_
C

O
U

N
T

 (
6

4
)

THREAD_N

tid == 63 ...

.

.

.

.

.

.

...

...

Figure 2. Shifting start accumulation positions (blue) in order to avoid bank conflicts during
the merging stage in histogram64.

The last phase of computations in histogram64Kernel() function is the merging of
per-thread sub-histograms into a per-block sub-histogram. At this stage each thread is
responsible for its own data value (dedicated s_Hist[] row), running through THREAD_N
columns of s_Hist[]. Similarly to the above, the shared memory bank index is equal to
((accumPos + threadIdx.x * THREAD_N) / 4) % 16. If THREAD_N is a multiple
of 64, the expression reduces to (accumPos / 4) % 16. If each thread within a half-
warp starts accumulation at the same position [0 .. THREAD_N), then we get 16-way bank
conflicts. However, simply by shifting the thread accumulation start position by 4 *

(threadIdx.x % 16) bytes relative to the half-warp base, we can completely avoid bank
conflicts at this stage as well. This is shown in Figure 2.

September 2013

Listing 2. Writing block sub-histogram into global memory.

If atomic global memory operations are available (exposed in CUDA via atomic*()
functions) concurrent threads (within the same block, or within different blocks) can update
the same global memory locations atomically, so thread blocks can merge their results within
a single CUDA kernel. Otherwise, each block must output its own sub-histogram, and a
separate final merging kernel mergeHistogram64Kernel() must be applied.

Implementation of histogram256

The per-block sub-histogram is stored in shared memory in the s_Hist[] array.
s_Hist[]is a 2D word array of WARP_N rows per BIN_COUNT columns, where each warp
of a thread block is responsible for its own sub-histogram, as shown in Figure 3.

...

...

WARP_SIZE WARP_SIZE

WARP_N * WARP_SIZE (THREAD_N)

W
A

R
P

_
N

BIN_COUNT

Figure 3. s_Hist[] layout for histogram256.

Compared to histogram64, threads no longer have isolated sub-histograms, but each
group of 32 threads (warp) shares the same memory range, thus introducing intra-warp
shared memory collisions. Since atomic shared memory operations are not natively
supported on G8x, special care has to be taken in order to resolve these collisions and
produce correct results.

The core of the 256-bin histogram implementation is the addData256() device function
that’s shown in Listing 3. Let’s describe its logic in detail.

const int value = threadIdx.x;

#if ATOMICS

 atomicAdd(d_Result + value, sum);

#else

 d_Result[blockIdx.x * BIN_COUNT + value] = sum;

#endif

September 2013

Listing 3. Avoiding intra-warp shared memory collisions.

The data argument is a value that was read from global memory, and that lies in the [0, 255]
range. Each warp thread must increment a location in the s_WarpHist[] array that
depends on the input data. s_WarpHist[]is a section of the entire block sub-histogram
s_Hist[], that corresponds to the current warp.

In order to prevent collisions between threads of a warp, the histogram counters are tagged
according to the last thread that wrote to them. The tag is stored in he 5 most significant bits
of the histogram counters. Only 5 bits are required, because the number of threads in a warp
is 32 (2^5).

The first thing each thread does is to read the previous value of the histogram counter. The
most significant bits of the count are masked and replaced with the tag of the current thread.
Then each thread writes the incremented count back to the sub-histogram in shared
memory.

When each thread in the warp receives unique data values, there are no collisions at all, and
no additional actions need to be done. However, when two or more threads collide trying to
write to the same location, the hardware performs shared memory write combining, that results
in the acceptance of the tagged counter from one of the threads, and the rejection from all
the other pending threads.

After the write attempt, each thread reads from the same shared memory location. The
threads that were able to write their count, exit the loop and stay idle waiting for the
remaining threads in the warp. The warp continues its execution as soon as all the threads
exit the loop.

Since each warp uses its own sub-histogram and warp threads are always synchronized we
do not rely on warp scheduling order (which is undefined). The loop won’t be repeated more
than 32 iterations, and that will only happen in case all the threads try to write the to the
same location.

__device__ void addData256(

volatile unsigned int *s_WarpHist,

unsigned int data,

unsigned int threadTag

){

 unsigned int count;

 do{

 count = s_WarpHist[data] & 0x07FFFFFFU;

 count = threadTag | (count + 1);

 s_WarpHist[data] = count;

 }while(s_WarpHist[data] != count);

}

September 2013

Listing 4. Writing block sub-histogram into global memory.

The last phase of computations in histogram256Kernel() is the merging of per-warp
sub-histograms into a per-block one. Similarly to histogram64Kernel(), the per-block
histogram is written to global memory. If atomic global memory operations are available
(exposed in CUDA via atomic*() functions) concurrent threads (within the same block,
or within different blocks) can update the same global memory locations atomically, so
thread blocks can merge their results within a single CUDA kernel. Otherwise, each block
must output its own sub-histogram, and a separate final merging kernel
mergeHistogram256Kernel() must be applied.

Performance

Since histogram64 is 100% free from bank conflicts and intra-warp branching divergence,
it runs at extremely high data-independent performance rate, which reaches 10GB/s on
G80.

On the other side, the performance of histogram256 depends on the input data, and that
causes bank conflicts and intra-warp branching divergence. When using a random
distribution of input values, histogram256 runs at 5.5GB/s on G80.

Bibliography

1. Wolfram Mathworld. “Histogram” http://mathworld.wolfram.com/Histogram.html

for(int pos = threadIdx.x; pos < BIN_COUNT; pos += blockDim.x){

 unsigned int sum = 0;

 for(int base = 0; base < BLOCK_MEMORY; base += BIN_COUNT)

 sum += s_Hist[base + pos] & 0x07FFFFFFU;

#if ATOMICS

 atomicAdd(d_Result + pos, sum);

#else

 d_Result[blockIdx.x * BIN_COUNT + pos] = sum;

#endif

}

http://mathworld.wolfram.com/Histogram.html

September 2013

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or
registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2007-2013 NVIDIA Corporation. All rights reserved.

