# UnifiedMemoryPerf - Unified and other CUDA Memories Performance ## Description This sample demonstrates the performance comparision using matrix multiplication kernel of Unified Memory with/without hints and other types of memory like zero copy buffers, pageable, pagelocked memory performing synchronous and Asynchronous transfers on a single GPU. ## Key Concepts CUDA Systems Integration, Unified Memory, CUDA Streams and Events, Pinned System Paged Memory ## Supported SM Architectures ## Supported OSes Linux, Windows ## Supported CPU Architecture x86_64, ppc64le, armv7l, aarch64 ## CUDA APIs involved ### [CUDA Runtime API](http://docs.nvidia.com/cuda/cuda-runtime-api/index.html) cudaMemcpy, cudaStreamDestroy, cudaMemPrefetchAsync, cudaFree, cudaMallocHost, cudaMallocManaged, cudaStreamAttachMemAsync, cudaHostGetDevicePointer, cudaFreeHost, cudaStreamSynchronize, cudaMalloc, cudaMemcpyAsync, cudaStreamCreate, cudaGetDeviceProperties ## Dependencies needed to build/run [UVM](../../../README.md#uvm) ## Prerequisites Download and install the [CUDA Toolkit 12.4](https://developer.nvidia.com/cuda-downloads) for your corresponding platform. Make sure the dependencies mentioned in [Dependencies]() section above are installed. ## Build and Run ### Windows The Windows samples are built using the Visual Studio IDE. Solution files (.sln) are provided for each supported version of Visual Studio, using the format: ``` *_vs.sln - for Visual Studio ``` Each individual sample has its own set of solution files in its directory: To build/examine all the samples at once, the complete solution files should be used. To build/examine a single sample, the individual sample solution files should be used. > **Note:** Some samples require that the Microsoft DirectX SDK (June 2010 or newer) be installed and that the VC++ directory paths are properly set up (**Tools > Options...**). Check DirectX Dependencies section for details." ### Linux The Linux samples are built using makefiles. To use the makefiles, change the current directory to the sample directory you wish to build, and run make: ``` $ cd $ make ``` The samples makefiles can take advantage of certain options: * **TARGET_ARCH=** - cross-compile targeting a specific architecture. Allowed architectures are x86_64, ppc64le, armv7l, aarch64. By default, TARGET_ARCH is set to HOST_ARCH. On a x86_64 machine, not setting TARGET_ARCH is the equivalent of setting TARGET_ARCH=x86_64.
`$ make TARGET_ARCH=x86_64`
`$ make TARGET_ARCH=ppc64le`
`$ make TARGET_ARCH=armv7l`
`$ make TARGET_ARCH=aarch64`
See [here](http://docs.nvidia.com/cuda/cuda-samples/index.html#cross-samples) for more details. * **dbg=1** - build with debug symbols ``` $ make dbg=1 ``` * **SMS="A B ..."** - override the SM architectures for which the sample will be built, where `"A B ..."` is a space-delimited list of SM architectures. For example, to generate SASS for SM 50 and SM 60, use `SMS="50 60"`. ``` $ make SMS="50 60" ``` * **HOST_COMPILER=** - override the default g++ host compiler. See the [Linux Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#system-requirements) for a list of supported host compilers. ``` $ make HOST_COMPILER=g++ ``` ## References (for more details)