/* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This sample implements a conjugate gradient solver on GPU * using CUBLAS and CUSPARSE with CUDA Graphs * */ // includes, system #include #include #include /* Using updated (v2) interfaces to cublas */ #include #include #include #include // Utilities and system includes #include // helper function CUDA error checking and initialization #include // helper for shared functions common to CUDA Samples namespace cg = cooperative_groups; const char *sSDKname = "conjugateGradientCudaGraphs"; #ifndef WITH_GRAPH #define WITH_GRAPH 1 #endif /* genTridiag: generate a random tridiagonal symmetric matrix */ void genTridiag(int *I, int *J, float *val, int N, int nz) { I[0] = 0, J[0] = 0, J[1] = 1; val[0] = (float)rand() / RAND_MAX + 10.0f; val[1] = (float)rand() / RAND_MAX; int start; for (int i = 1; i < N; i++) { if (i > 1) { I[i] = I[i - 1] + 3; } else { I[1] = 2; } start = (i - 1) * 3 + 2; J[start] = i - 1; J[start + 1] = i; if (i < N - 1) { J[start + 2] = i + 1; } val[start] = val[start - 1]; val[start + 1] = (float)rand() / RAND_MAX + 10.0f; if (i < N - 1) { val[start + 2] = (float)rand() / RAND_MAX; } } I[N] = nz; } __global__ void initVectors(float *rhs, float *x, int N) { size_t gid = blockIdx.x * blockDim.x + threadIdx.x; for (size_t i = gid; i < N; i += gridDim.x * blockDim.x) { rhs[i] = 1.0; x[i] = 0.0; } } __global__ void gpuDotProduct(float *vecA, float *vecB, float *result, int size) { cg::thread_block cta = cg::this_thread_block(); int gid = blockIdx.x * blockDim.x + threadIdx.x; extern __shared__ double tmp[]; double temp_sum = 0.0; for (int i = gid; i < size; i += gridDim.x * blockDim.x) { temp_sum += (double)(vecA[i] * vecB[i]); } tmp[cta.thread_rank()] = temp_sum; cg::sync(cta); cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta); double beta = temp_sum; double temp; for (int i = tile32.size() / 2; i > 0; i >>= 1) { if (tile32.thread_rank() < i) { temp = tmp[cta.thread_rank() + i]; beta += temp; tmp[cta.thread_rank()] = beta; } cg::sync(tile32); } cg::sync(cta); if (cta.thread_rank() == 0) { beta = 0.0; for (int i = 0; i < cta.size(); i += tile32.size()) { beta += tmp[i]; } atomicAdd(result, (float)beta); } } __global__ void gpuSpMV(int *I, int *J, float *val, int nnz, int num_rows, float alpha, float *inputVecX, float *outputVecY) { size_t gid = blockIdx.x * blockDim.x + threadIdx.x; for (size_t i = gid; i < num_rows; i += blockDim.x * gridDim.x) { int row_elem = I[i]; int next_row_elem = I[i + 1]; int num_elems_this_row = next_row_elem - row_elem; float output = 0.0; for (int j = 0; j < num_elems_this_row; j++) { output += alpha * val[row_elem + j] * inputVecX[J[row_elem + j]]; } outputVecY[i] = output; } } __global__ void r1_div_x(float *r1, float *r0, float *b) { int gid = blockIdx.x * blockDim.x + threadIdx.x; if (gid == 0) { b[0] = r1[0] / r0[0]; } } __global__ void a_minus(float *a, float *na) { int gid = blockIdx.x * blockDim.x + threadIdx.x; if (gid == 0) { na[0] = -(a[0]); } } int main(int argc, char **argv) { int N = 0, nz = 0, *I = NULL, *J = NULL; float *val = NULL; const float tol = 1e-5f; const int max_iter = 10000; float *x; float *rhs; float r1; int *d_col, *d_row; float *d_val, *d_x; float *d_r, *d_p, *d_Ax; int k; float alpha, beta, alpham1; cudaStream_t stream1, streamForGraph; // This will pick the best possible CUDA capable device cudaDeviceProp deviceProp; int devID = findCudaDevice(argc, (const char **)argv); if (devID < 0) { printf("exiting...\n"); exit(EXIT_SUCCESS); } checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID)); // Statistics about the GPU device printf( "> GPU device has %d Multi-Processors, SM %d.%d compute capabilities\n\n", deviceProp.multiProcessorCount, deviceProp.major, deviceProp.minor); /* Generate a random tridiagonal symmetric matrix in CSR format */ N = 1048576; nz = (N - 2) * 3 + 4; I = (int *)malloc(sizeof(int) * (N + 1)); J = (int *)malloc(sizeof(int) * nz); val = (float *)malloc(sizeof(float) * nz); genTridiag(I, J, val, N, nz); x = (float *)malloc(sizeof(float) * N); rhs = (float *)malloc(sizeof(float) * N); for (int i = 0; i < N; i++) { rhs[i] = 1.0; x[i] = 0.0; } /* Get handle to the CUBLAS context */ cublasHandle_t cublasHandle = 0; cublasStatus_t cublasStatus; cublasStatus = cublasCreate(&cublasHandle); checkCudaErrors(cublasStatus); /* Get handle to the CUSPARSE context */ cusparseHandle_t cusparseHandle = 0; cusparseStatus_t cusparseStatus; cusparseStatus = cusparseCreate(&cusparseHandle); checkCudaErrors(cusparseStatus); checkCudaErrors(cudaStreamCreate(&stream1)); checkCudaErrors(cudaMalloc((void **)&d_col, nz * sizeof(int))); checkCudaErrors(cudaMalloc((void **)&d_row, (N + 1) * sizeof(int))); checkCudaErrors(cudaMalloc((void **)&d_val, nz * sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_x, N * sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_r, N * sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_p, N * sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_Ax, N * sizeof(float))); float *d_r1, *d_r0, *d_dot, *d_a, *d_na, *d_b; checkCudaErrors(cudaMalloc((void **)&d_r1, sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_r0, sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_dot, sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_a, sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_na, sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_b, sizeof(float))); cusparseMatDescr_t descr = 0; checkCudaErrors(cusparseCreateMatDescr(&descr)); checkCudaErrors(cusparseSetMatType(descr, CUSPARSE_MATRIX_TYPE_GENERAL)); checkCudaErrors(cusparseSetMatIndexBase(descr, CUSPARSE_INDEX_BASE_ZERO)); int numBlocks = 0, blockSize = 0, numBlocks2 = 0, blockSize2 = 0; checkCudaErrors( cudaOccupancyMaxPotentialBlockSize(&numBlocks, &blockSize, initVectors)); checkCudaErrors(cudaMemcpyAsync(d_col, J, nz * sizeof(int), cudaMemcpyHostToDevice, stream1)); checkCudaErrors(cudaMemcpyAsync(d_row, I, (N + 1) * sizeof(int), cudaMemcpyHostToDevice, stream1)); checkCudaErrors(cudaMemcpyAsync(d_val, val, nz * sizeof(float), cudaMemcpyHostToDevice, stream1)); initVectors<<>>(d_r, d_x, N); checkCudaErrors(cudaOccupancyMaxPotentialBlockSize(&numBlocks2, &blockSize2, gpuSpMV)); checkCudaErrors(cudaOccupancyMaxPotentialBlockSize(&numBlocks, &blockSize, gpuDotProduct)); alpha = 1.0; alpham1 = -1.0; beta = 0.0; checkCudaErrors(cusparseSetStream(cusparseHandle, stream1)); checkCudaErrors( cusparseScsrmv(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz, &alpha, descr, d_val, d_row, d_col, d_x, &beta, d_Ax)); checkCudaErrors(cublasSetStream(cublasHandle, stream1)); checkCudaErrors(cublasSaxpy(cublasHandle, N, &alpham1, d_Ax, 1, d_r, 1)); checkCudaErrors( cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_DEVICE)); checkCudaErrors(cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, d_r1)); k = 1; // First Iteration when k=1 starts checkCudaErrors(cublasScopy(cublasHandle, N, d_r, 1, d_p, 1)); checkCudaErrors( cusparseScsrmv(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz, &alpha, descr, d_val, d_row, d_col, d_p, &beta, d_Ax)); checkCudaErrors(cublasSdot(cublasHandle, N, d_p, 1, d_Ax, 1, d_dot)); r1_div_x<<<1, 1, 0, stream1>>>(d_r1, d_dot, d_a); checkCudaErrors(cublasSaxpy(cublasHandle, N, d_a, d_p, 1, d_x, 1)); a_minus<<<1, 1, 0, stream1>>>(d_a, d_na); checkCudaErrors(cublasSaxpy(cublasHandle, N, d_na, d_Ax, 1, d_r, 1)); checkCudaErrors(cudaMemcpyAsync(d_r0, d_r1, sizeof(float), cudaMemcpyDeviceToDevice, stream1)); checkCudaErrors(cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, d_r1)); checkCudaErrors(cudaMemcpyAsync(&r1, d_r1, sizeof(float), cudaMemcpyDeviceToHost, stream1)); checkCudaErrors(cudaStreamSynchronize(stream1)); printf("iteration = %3d, residual = %e\n", k, sqrt(r1)); // First Iteration when k=1 ends k++; #if WITH_GRAPH cudaGraph_t initGraph; checkCudaErrors(cudaStreamCreate(&streamForGraph)); checkCudaErrors(cublasSetStream(cublasHandle, stream1)); checkCudaErrors(cusparseSetStream(cusparseHandle, stream1)); checkCudaErrors(cudaStreamBeginCapture(stream1, cudaStreamCaptureModeGlobal)); r1_div_x<<<1, 1, 0, stream1>>>(d_r1, d_r0, d_b); cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_DEVICE); checkCudaErrors(cublasSscal(cublasHandle, N, d_b, d_p, 1)); cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_HOST); checkCudaErrors(cublasSaxpy(cublasHandle, N, &alpha, d_r, 1, d_p, 1)); cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_DEVICE); #if 0 // Use cusparseScsrmv API when it is cuda graph compliant checkCudaErrors( cusparseSetPointerMode(cusparseHandle, CUSPARSE_POINTER_MODE_HOST)); checkCudaErrors( cusparseScsrmv(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz, &alpha, descr, d_val, d_row, d_col, d_p, &beta, d_Ax)); #else gpuSpMV<<>>(d_row, d_col, d_val, nz, N, alpha, d_p, d_Ax); #endif checkCudaErrors(cudaMemsetAsync(d_dot, 0, sizeof(float), stream1)); // Use cublasSdot API when it is cuda graph compliant. // checkCudaErrors(cublasSdot(cublasHandle, N, d_p, 1, d_Ax, 1, d_dot)); gpuDotProduct<<>>( d_p, d_Ax, d_dot, N); r1_div_x<<<1, 1, 0, stream1>>>(d_r1, d_dot, d_a); checkCudaErrors(cublasSaxpy(cublasHandle, N, d_a, d_p, 1, d_x, 1)); a_minus<<<1, 1, 0, stream1>>>(d_a, d_na); checkCudaErrors(cublasSaxpy(cublasHandle, N, d_na, d_Ax, 1, d_r, 1)); checkCudaErrors(cudaMemcpyAsync(d_r0, d_r1, sizeof(float), cudaMemcpyDeviceToDevice, stream1)); checkCudaErrors(cudaMemsetAsync(d_r1, 0, sizeof(float), stream1)); // Use cublasSdot API when it is cuda graph compliant. // checkCudaErrors(cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, d_r1)); gpuDotProduct<<>>( d_r, d_r, d_r1, N); checkCudaErrors(cudaMemcpyAsync((float *)&r1, d_r1, sizeof(float), cudaMemcpyDeviceToHost, stream1)); checkCudaErrors(cudaStreamEndCapture(stream1, &initGraph)); cudaGraphExec_t graphExec; checkCudaErrors(cudaGraphInstantiate(&graphExec, initGraph, NULL, NULL, 0)); #endif checkCudaErrors(cublasSetStream(cublasHandle, stream1)); checkCudaErrors(cusparseSetStream(cusparseHandle, stream1)); while (r1 > tol * tol && k <= max_iter) { #if WITH_GRAPH checkCudaErrors(cudaGraphLaunch(graphExec, streamForGraph)); checkCudaErrors(cudaStreamSynchronize(streamForGraph)); #else r1_div_x<<<1, 1, 0, stream1>>>(d_r1, d_r0, d_b); cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_DEVICE); checkCudaErrors(cublasSscal(cublasHandle, N, d_b, d_p, 1)); cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_HOST); checkCudaErrors(cublasSaxpy(cublasHandle, N, &alpha, d_r, 1, d_p, 1)); checkCudaErrors(cusparseScsrmv( cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz, &alpha, descr, d_val, d_row, d_col, d_p, &beta, d_Ax)); cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_DEVICE); checkCudaErrors(cublasSdot(cublasHandle, N, d_p, 1, d_Ax, 1, d_dot)); r1_div_x<<<1, 1, 0, stream1>>>(d_r1, d_dot, d_a); checkCudaErrors(cublasSaxpy(cublasHandle, N, d_a, d_p, 1, d_x, 1)); a_minus<<<1, 1, 0, stream1>>>(d_a, d_na); checkCudaErrors(cublasSaxpy(cublasHandle, N, d_na, d_Ax, 1, d_r, 1)); checkCudaErrors(cudaMemcpyAsync(d_r0, d_r1, sizeof(float), cudaMemcpyDeviceToDevice, stream1)); checkCudaErrors(cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, d_r1)); checkCudaErrors(cudaMemcpyAsync((float *)&r1, d_r1, sizeof(float), cudaMemcpyDeviceToHost, stream1)); checkCudaErrors(cudaStreamSynchronize(stream1)); #endif printf("iteration = %3d, residual = %e\n", k, sqrt(r1)); k++; } #if WITH_GRAPH checkCudaErrors(cudaMemcpyAsync(x, d_x, N * sizeof(float), cudaMemcpyDeviceToHost, streamForGraph)); checkCudaErrors(cudaStreamSynchronize(streamForGraph)); #else checkCudaErrors(cudaMemcpyAsync(x, d_x, N * sizeof(float), cudaMemcpyDeviceToHost, stream1)); checkCudaErrors(cudaStreamSynchronize(stream1)); #endif float rsum, diff, err = 0.0; for (int i = 0; i < N; i++) { rsum = 0.0; for (int j = I[i]; j < I[i + 1]; j++) { rsum += val[j] * x[J[j]]; } diff = fabs(rsum - rhs[i]); if (diff > err) { err = diff; } } #if WITH_GRAPH checkCudaErrors(cudaGraphExecDestroy(graphExec)); checkCudaErrors(cudaGraphDestroy(initGraph)); checkCudaErrors(cudaStreamDestroy(streamForGraph)); #endif checkCudaErrors(cudaStreamDestroy(stream1)); cusparseDestroy(cusparseHandle); cublasDestroy(cublasHandle); free(I); free(J); free(val); free(x); free(rhs); cudaFree(d_col); cudaFree(d_row); cudaFree(d_val); cudaFree(d_x); cudaFree(d_r); cudaFree(d_p); cudaFree(d_Ax); printf("Test Summary: Error amount = %f\n", err); exit((k <= max_iter) ? 0 : 1); }