/* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Matrix multiplication: C = A * B. * Host code. * * This sample implements matrix multiplication using the CUDA driver API. * It has been written for clarity of exposition to illustrate various CUDA * programming principles, not with the goal of providing the most * performant generic kernel for matrix multiplication. * * CUBLAS provides high-performance matrix multiplication. * See also: * V. Volkov and J. Demmel, "Benchmarking GPUs to tune dense linear algebra," * in Proc. 2008 ACM/IEEE Conf. on Supercomputing (SC '08), * Piscataway, NJ: IEEE Press, 2008, pp. Art. 31:1-11. * * Volkov, V. 2010. Better performance at lower occupancy, * GPU Technology Conference 2~010 (GTC 2010). * */ // includes, system #include #include #include #include #include #include #include // includes, project, CUDA #include #include #include #include #include #include #include #include #include "matrixMul.h" //////////////////////////////////////////////////////////////////////////////// // declaration, forward void runTest(int argc, char **argv); void randomInit(float *, int); extern "C" void computeGold(float *, const float *, const float *, unsigned int, unsigned int, unsigned int); static int initCUDA(int argc, char **argv, CUfunction *pMatrixMul); #ifndef FATBIN_FILE #define FATBIN_FILE "matrixMul_kernel64.fatbin" #endif //////////////////////////////////////////////////////////////////////////////// // Globals //////////////////////////////////////////////////////////////////////////////// CUdevice cuDevice; CUcontext cuContext; CUmodule cuModule; size_t totalGlobalMem; const char *sSDKsample = "matrixMulDrv (Driver API)"; void constantInit(float *data, int size, float val) { for (int i = 0; i < size; ++i) { data[i] = val; } } //////////////////////////////////////////////////////////////////////////////// // Program main //////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { printf("[ %s ]\n", sSDKsample); runTest(argc, argv); } //////////////////////////////////////////////////////////////////////////////// //! Run a simple test for CUDA //////////////////////////////////////////////////////////////////////////////// void runTest(int argc, char **argv) { // initialize CUDA CUfunction matrixMul = NULL; int block_size = 32; initCUDA(argc, argv, &matrixMul); // set seed for rand() srand(2006); // allocate host memory for matrices A and B unsigned int size_A = WA * HA; unsigned int mem_size_A = sizeof(float) * size_A; float *h_A = reinterpret_cast(malloc(mem_size_A)); unsigned int size_B = WB * HB; unsigned int mem_size_B = sizeof(float) * size_B; float *h_B = reinterpret_cast(malloc(mem_size_B)); // initialize host memory const float valB = 0.01f; constantInit(h_A, size_A, 1.0f); constantInit(h_B, size_B, valB); // allocate device memory CUdeviceptr d_A; checkCudaErrors(cuMemAlloc(&d_A, mem_size_A)); CUdeviceptr d_B; checkCudaErrors(cuMemAlloc(&d_B, mem_size_B)); // copy host memory to device checkCudaErrors(cuMemcpyHtoD(d_A, h_A, mem_size_A)); checkCudaErrors(cuMemcpyHtoD(d_B, h_B, mem_size_B)); // allocate device memory for result size_t size_C = WC * HC; size_t mem_size_C = sizeof(float) * size_C; CUdeviceptr d_C; checkCudaErrors(cuMemAlloc(&d_C, mem_size_C)); // allocate mem for the result on host side float *h_C = reinterpret_cast(malloc(mem_size_C)); // create and start timer StopWatchInterface *timer = NULL; sdkCreateTimer(&timer); // start the timer sdkStartTimer(&timer); // There are two ways to launch CUDA kernels via the Driver API. // In this CUDA Sample, we illustrate both ways to pass parameters // and specify parameters. By default we use the simpler method. dim3 block(block_size, block_size, 1); dim3 grid(WC / block_size, HC / block_size, 1); if (1) { // This is the new CUDA 4.0 API for Kernel Parameter passing and Kernel // Launching (simplier method) size_t Matrix_Width_A = (size_t)WA; size_t Matrix_Width_B = (size_t)WB; void *args[5] = {&d_C, &d_A, &d_B, &Matrix_Width_A, &Matrix_Width_B}; // new CUDA 4.0 Driver API Kernel launch call checkCudaErrors(cuLaunchKernel( matrixMul, grid.x, grid.y, grid.z, block.x, block.y, block.z, 2 * block_size * block_size * sizeof(float), NULL, args, NULL)); } else { // This is the new CUDA 4.0 API for Kernel Parameter passing and Kernel // Launching (advanced method) int offset = 0; char argBuffer[256]; // pass in launch parameters (not actually de-referencing CUdeviceptr). // CUdeviceptr is storing the value of the parameters *(reinterpret_cast(&argBuffer[offset])) = d_C; offset += sizeof(d_C); *(reinterpret_cast(&argBuffer[offset])) = d_A; offset += sizeof(d_A); *(reinterpret_cast(&argBuffer[offset])) = d_B; offset += sizeof(d_B); size_t Matrix_Width_A = (size_t)WA; size_t Matrix_Width_B = (size_t)WB; *(reinterpret_cast(&argBuffer[offset])) = Matrix_Width_A; offset += sizeof(Matrix_Width_A); *(reinterpret_cast(&argBuffer[offset])) = Matrix_Width_B; offset += sizeof(Matrix_Width_B); void *kernel_launch_config[5] = {CU_LAUNCH_PARAM_BUFFER_POINTER, argBuffer, CU_LAUNCH_PARAM_BUFFER_SIZE, &offset, CU_LAUNCH_PARAM_END}; // new CUDA 4.0 Driver API Kernel launch call checkCudaErrors(cuLaunchKernel( matrixMul, grid.x, grid.y, grid.z, block.x, block.y, block.z, 2 * block_size * block_size * sizeof(float), NULL, NULL, reinterpret_cast(&kernel_launch_config))); } // copy result from device to host checkCudaErrors(cuMemcpyDtoH(reinterpret_cast(h_C), d_C, mem_size_C)); // stop and destroy timer sdkStopTimer(&timer); printf("Processing time: %f (ms)\n", sdkGetTimerValue(&timer)); sdkDeleteTimer(&timer); printf("Checking computed result for correctness: "); bool correct = true; for (int i = 0; i < static_cast(WC * HC); i++) { if (fabs(h_C[i] - (WA * valB)) > 1e-5) { printf("Error! Matrix[%05d]=%.8f, ref=%.8f error term is > 1e-5\n", i, h_C[i], WA * valB); correct = false; } } printf("%s\n", correct ? "Result = PASS" : "Result = FAIL"); printf( "\nNOTE: The CUDA Samples are not meant for performance measurements. " "Results may vary when GPU Boost is enabled.\n"); // clean up memory free(h_A); free(h_B); free(h_C); checkCudaErrors(cuMemFree(d_A)); checkCudaErrors(cuMemFree(d_B)); checkCudaErrors(cuMemFree(d_C)); checkCudaErrors(cuCtxDestroy(cuContext)); } // Allocates a matrix with random float entries. void randomInit(float *data, int size) { for (int i = 0; i < size; ++i) { data[i] = rand() / static_cast(RAND_MAX); } } static int initCUDA(int argc, char **argv, CUfunction *pMatrixMul) { CUfunction cuFunction = 0; CUresult status; int major = 0, minor = 0; char deviceName[100]; cuDevice = findCudaDeviceDRV(argc, (const char **)argv); // get compute capabilities and the devicename checkCudaErrors(cuDeviceGetAttribute( &major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cuDevice)); checkCudaErrors(cuDeviceGetAttribute( &minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, cuDevice)); checkCudaErrors(cuDeviceGetName(deviceName, sizeof(deviceName), cuDevice)); printf("> GPU Device has SM %d.%d compute capability\n", major, minor); checkCudaErrors(cuDeviceTotalMem(&totalGlobalMem, cuDevice)); printf(" Total amount of global memory: %llu bytes\n", (long long unsigned int)totalGlobalMem); checkCudaErrors(cuCtxCreate(&cuContext, 0, cuDevice)); // first search for the module path before we load the results std::string module_path; std::ostringstream fatbin; if (!findFatbinPath(FATBIN_FILE, module_path, argv, fatbin)) { exit(EXIT_FAILURE); } else { printf("> initCUDA loading module: <%s>\n", module_path.c_str()); } if (!fatbin.str().size()) { printf("fatbin file empty. exiting..\n"); exit(EXIT_FAILURE); } // Create module from binary file (FATBIN) checkCudaErrors(cuModuleLoadData(&cuModule, fatbin.str().c_str())); checkCudaErrors(cuModuleGetFunction(&cuFunction, cuModule, "matrixMul_bs32_64bit")); *pMatrixMul = cuFunction; return 0; }