/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Matrix multiplication: C = A * B. * Host code. * * This sample implements matrix multiplication as described in Chapter 3 * of the programming guide and uses the CUBLAS library to demonstrate * the best performance. * SOME PRECAUTIONS: * IF WE WANT TO CALCULATE ROW-MAJOR MATRIX MULTIPLY C = A * B, * WE JUST NEED CALL CUBLAS API IN A REVERSE ORDER: cublasSegemm(B, A)! * The reason is explained as follows: * CUBLAS library uses column-major storage, but C/C++ use row-major storage. * When passing the matrix pointer to CUBLAS, the memory layout alters from * row-major to column-major, which is equivalent to an implicit transpose. * In the case of row-major C/C++ matrix A, B, and a simple matrix multiplication * C = A * B, we can't use the input order like cublasSgemm(A, B) because of * implicit transpose. The actual result of cublasSegemm(A, B) is A(T) * B(T). * If col(A(T)) != row(B(T)), equal to row(A) != col(B), A(T) and B(T) are not * multipliable. Moreover, even if A(T) and B(T) are multipliable, the result C * is a column-based cublas matrix, which means C(T) in C/C++, we need extra * transpose code to convert it to a row-based C/C++ matrix. * To solve the problem, let's consider our desired result C, a row-major matrix. * In cublas format, it is C(T) actually (because of the implicit transpose). * C = A * B, so C(T) = (A * B) (T) = B(T) * A(T). Cublas matrice B(T) and A(T) * happen to be C/C++ matrice B and A (still because of the implicit transpose)! * We don't need extra transpose code, we only need alter the input order! * * CUBLAS provides high-performance matrix multiplication. * See also: * V. Volkov and J. Demmel, "Benchmarking GPUs to tune dense linear algebra," * in Proc. 2008 ACM/IEEE Conf. on Supercomputing (SC '08), * Piscataway, NJ: IEEE Press, 2008, pp. Art. 31:1-11. */ // Utilities and system includes #include #include // helper for shared functions common to CUDA Samples // CUDA runtime #include #include // CUDA and CUBLAS functions #include #include #ifndef min #define min(a, b) ((a < b) ? a : b) #endif #ifndef max #define max(a, b) ((a > b) ? a : b) #endif // Optional Command-line multiplier for matrix sizes typedef struct _matrixSize { unsigned int uiWA, uiHA, uiWB, uiHB, uiWC, uiHC; } sMatrixSize; //////////////////////////////////////////////////////////////////////////////// //! Compute reference data set matrix multiply on CPU //! C = A * B //! @param C reference data, computed but preallocated //! @param A matrix A as provided to device //! @param B matrix B as provided to device //! @param hA height of matrix A //! @param wB width of matrix B //////////////////////////////////////////////////////////////////////////////// void matrixMulCPU(float *C, const float *A, const float *B, unsigned int hA, unsigned int wA, unsigned int wB) { for (unsigned int i = 0; i < hA; ++i) for (unsigned int j = 0; j < wB; ++j) { double sum = 0; for (unsigned int k = 0; k < wA; ++k) { double a = A[i * wA + k]; double b = B[k * wB + j]; sum += a * b; } C[i * wB + j] = (float)sum; } } // Allocates a matrix with random float entries. void randomInit(float *data, int size) { for (int i = 0; i < size; ++i) data[i] = rand() / (float)RAND_MAX; } void printDiff(float *data1, float *data2, int width, int height, int iListLength, float fListTol) { printf("Listing first %d Differences > %.6f...\n", iListLength, fListTol); int i, j, k; int error_count = 0; for (j = 0; j < height; j++) { if (error_count < iListLength) { printf("\n Row %d:\n", j); } for (i = 0; i < width; i++) { k = j * width + i; float fDiff = fabs(data1[k] - data2[k]); if (fDiff > fListTol) { if (error_count < iListLength) { printf(" Loc(%d,%d)\tCPU=%.5f\tGPU=%.5f\tDiff=%.6f\n", i, j, data1[k], data2[k], fDiff); } error_count++; } } } printf(" \n Total Errors = %d\n", error_count); } void initializeCUDA(int argc, char **argv, int &devID, int &iSizeMultiple, sMatrixSize &matrix_size) { // By default, we use device 0, otherwise we override the device ID based on // what is provided at the command line cudaError_t error; devID = 0; devID = findCudaDevice(argc, (const char **)argv); if (checkCmdLineFlag(argc, (const char **)argv, "sizemult")) { iSizeMultiple = getCmdLineArgumentInt(argc, (const char **)argv, "sizemult"); } iSizeMultiple = min(iSizeMultiple, 10); iSizeMultiple = max(iSizeMultiple, 1); cudaDeviceProp deviceProp; error = cudaGetDeviceProperties(&deviceProp, devID); if (error != cudaSuccess) { printf("cudaGetDeviceProperties returned error code %d, line(%d)\n", error, __LINE__); exit(EXIT_FAILURE); } printf("GPU Device %d: \"%s\" with compute capability %d.%d\n\n", devID, deviceProp.name, deviceProp.major, deviceProp.minor); int block_size = 32; matrix_size.uiWA = 3 * block_size * iSizeMultiple; matrix_size.uiHA = 4 * block_size * iSizeMultiple; matrix_size.uiWB = 2 * block_size * iSizeMultiple; matrix_size.uiHB = 3 * block_size * iSizeMultiple; matrix_size.uiWC = 2 * block_size * iSizeMultiple; matrix_size.uiHC = 4 * block_size * iSizeMultiple; printf("MatrixA(%u,%u), MatrixB(%u,%u), MatrixC(%u,%u)\n", matrix_size.uiHA, matrix_size.uiWA, matrix_size.uiHB, matrix_size.uiWB, matrix_size.uiHC, matrix_size.uiWC); if (matrix_size.uiWA != matrix_size.uiHB || matrix_size.uiHA != matrix_size.uiHC || matrix_size.uiWB != matrix_size.uiWC) { printf("ERROR: Matrix sizes do not match!\n"); exit(-1); } } //////////////////////////////////////////////////////////////////////////////// //! Run a simple test matrix multiply using CUBLAS //////////////////////////////////////////////////////////////////////////////// int matrixMultiply(int argc, char **argv, int devID, sMatrixSize &matrix_size) { cudaDeviceProp deviceProp; checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID)); int block_size = 32; // set seed for rand() srand(2006); // allocate host memory for matrices A and B unsigned int size_A = matrix_size.uiWA * matrix_size.uiHA; unsigned int mem_size_A = sizeof(float) * size_A; float *h_A = (float *)malloc(mem_size_A); unsigned int size_B = matrix_size.uiWB * matrix_size.uiHB; unsigned int mem_size_B = sizeof(float) * size_B; float *h_B = (float *)malloc(mem_size_B); // set seed for rand() srand(2006); // initialize host memory randomInit(h_A, size_A); randomInit(h_B, size_B); // allocate device memory float *d_A, *d_B, *d_C; unsigned int size_C = matrix_size.uiWC * matrix_size.uiHC; unsigned int mem_size_C = sizeof(float) * size_C; // allocate host memory for the result float *h_C = (float *)malloc(mem_size_C); float *h_CUBLAS = (float *)malloc(mem_size_C); checkCudaErrors(cudaMalloc((void **)&d_A, mem_size_A)); checkCudaErrors(cudaMalloc((void **)&d_B, mem_size_B)); checkCudaErrors(cudaMemcpy(d_A, h_A, mem_size_A, cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpy(d_B, h_B, mem_size_B, cudaMemcpyHostToDevice)); checkCudaErrors(cudaMalloc((void **)&d_C, mem_size_C)); // setup execution parameters dim3 threads(block_size, block_size); dim3 grid(matrix_size.uiWC / threads.x, matrix_size.uiHC / threads.y); // create and start timer printf("Computing result using CUBLAS..."); // execute the kernel int nIter = 30; // CUBLAS version 2.0 { const float alpha = 1.0f; const float beta = 0.0f; cublasHandle_t handle; cudaEvent_t start, stop; checkCudaErrors(cublasCreate(&handle)); // Perform warmup operation with cublas checkCudaErrors(cublasSgemm( handle, CUBLAS_OP_N, CUBLAS_OP_N, matrix_size.uiWB, matrix_size.uiHA, matrix_size.uiWA, &alpha, d_B, matrix_size.uiWB, d_A, matrix_size.uiWA, &beta, d_C, matrix_size.uiWB)); // Allocate CUDA events that we'll use for timing checkCudaErrors(cudaEventCreate(&start)); checkCudaErrors(cudaEventCreate(&stop)); // Record the start event checkCudaErrors(cudaEventRecord(start, NULL)); for (int j = 0; j < nIter; j++) { // note cublas is column primary! // need to transpose the order checkCudaErrors(cublasSgemm( handle, CUBLAS_OP_N, CUBLAS_OP_N, matrix_size.uiWB, matrix_size.uiHA, matrix_size.uiWA, &alpha, d_B, matrix_size.uiWB, d_A, matrix_size.uiWA, &beta, d_C, matrix_size.uiWB)); } printf("done.\n"); // Record the stop event checkCudaErrors(cudaEventRecord(stop, NULL)); // Wait for the stop event to complete checkCudaErrors(cudaEventSynchronize(stop)); float msecTotal = 0.0f; checkCudaErrors(cudaEventElapsedTime(&msecTotal, start, stop)); // Compute and print the performance float msecPerMatrixMul = msecTotal / nIter; double flopsPerMatrixMul = 2.0 * (double)matrix_size.uiHC * (double)matrix_size.uiWC * (double)matrix_size.uiHB; double gigaFlops = (flopsPerMatrixMul * 1.0e-9f) / (msecPerMatrixMul / 1000.0f); printf("Performance= %.2f GFlop/s, Time= %.3f msec, Size= %.0f Ops\n", gigaFlops, msecPerMatrixMul, flopsPerMatrixMul); // copy result from device to host checkCudaErrors( cudaMemcpy(h_CUBLAS, d_C, mem_size_C, cudaMemcpyDeviceToHost)); // Destroy the handle checkCudaErrors(cublasDestroy(handle)); } // compute reference solution printf("Computing result using host CPU..."); float *reference = (float *)malloc(mem_size_C); matrixMulCPU(reference, h_A, h_B, matrix_size.uiHA, matrix_size.uiWA, matrix_size.uiWB); printf("done.\n"); // check result (CUBLAS) bool resCUBLAS = sdkCompareL2fe(reference, h_CUBLAS, size_C, 1.0e-6f); if (resCUBLAS != true) { printDiff(reference, h_CUBLAS, matrix_size.uiWC, matrix_size.uiHC, 100, 1.0e-5f); } printf("Comparing CUBLAS Matrix Multiply with CPU results: %s\n", (true == resCUBLAS) ? "PASS" : "FAIL"); printf( "\nNOTE: The CUDA Samples are not meant for performance measurements. " "Results may vary when GPU Boost is enabled.\n"); // clean up memory free(h_A); free(h_B); free(h_C); free(reference); checkCudaErrors(cudaFree(d_A)); checkCudaErrors(cudaFree(d_B)); checkCudaErrors(cudaFree(d_C)); if (resCUBLAS == true) { return EXIT_SUCCESS; // return value = 1 } else { return EXIT_FAILURE; // return value = 0 } } //////////////////////////////////////////////////////////////////////////////// // Program main //////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { printf("[Matrix Multiply CUBLAS] - Starting...\n"); int devID = 0, sizeMult = 5; sMatrixSize matrix_size; initializeCUDA(argc, argv, devID, sizeMult, matrix_size); int matrix_result = matrixMultiply(argc, argv, devID, matrix_size); return matrix_result; }