

September 2013

Discrete Cosine
Transform for 8x8
Blocks with CUDA

Anton Obukhov
aobukhov@nvidia.com
Alexander Kharlamov
akharlamov@nvidia.com

mailto:aobukhov@nvidia.com
mailto:akharlamov@nvidia.com

September 2013 2

Document Change History

Version Date Responsible Reason for Change

0.8 24.03.2008 Alexander Kharlamov Initial release

0.9 25.03.2008 Anton Obukhov Added algorithm-specific parts, fixed some issues

1.0 17.10.2008 Anton Obukhov Revised document structure

September 2013 3

Abstract

In this whitepaper the Discrete Cosine Transform (DCT) is discussed. The two-dimensional
variation of the transform that operates on 8x8 blocks (DCT8x8) is widely used in image and
video coding because it exhibits high signal decorrelation rates and can be easily
implemented on the majority of contemporary computing architectures. The key feature of
the DCT8x8 is that any pair of 8x8 blocks can be processed independently. This makes
possible fully parallel implementation of DCT8x8 by definition. Most of CPU-based
implementations of DCT8x8 are firmly adjusted for operating using fixed point arithmetic
but still appear to be rather costly as soon as blocks are processed in the sequential order by
the single ALU. Performing DCT8x8 computation on GPU using NVIDIA CUDA
technology gives significant performance boost even compared to a modern CPU. The
proposed approach is accompanied with the sample code “DCT8x8” in the NVIDIA
CUDA SDK.

September 2013 4

1. Introduction

The Discrete Cosine Transform (DCT) is a Fourier-like transform, which was first proposed
by Ahmed et al. (1974). While the Fourier Transform represents a signal as the mixture of
sines and cosines, the Cosine Transform performs only the cosine-series expansion. The
purpose of DCT is to perform decorrelation of the input signal and to present the output in
the frequency domain. The DCT is known for its high “energy compaction” property,
meaning that the transformed signal can be easily analyzed using few low-frequency
components. It turns out to be that the DCT is a reasonable balance of optimality of the
input decorrelation (approaching the Karhunen-Loève transform) and the computational
complexity. This fact made it widely used in digital signal processing.

There are several types of DCT [2]. The most popular is two-dimensional symmetric
variation of the transform that operates on 8x8 blocks (DCT8x8) and its inverse. The
DCT8x8 is utilized in JPEG compression routines and has become a de-facto standard in
image and video coding algorithms and other DSP-related areas. The two-dimensional input
signal is divided into the set of nonoverlapping 8x8 blocks and each block is processed
independently. This makes it possible to perform the block-wise transform in parallel, which
is the key feature of the DCT8x8.

A lot of effort has been put into optimizing DCT routines on existing hardware. Most of the
CPU implementations of DCT8x8 are well-optimized, which includes the transform
separability utilization on high-level and fixed point arithmetic, cache-targeted optimizations
on low-level. On the other hand, the key feature of the DCT8x8 is not utilized in any
implementation due to architecture limits. However, there is no limit for improvement.

GPU acceleration of DCT8x8 computation has been possible since appearance of shader
languages. Nevertheless, this required a specific setup to utilize common graphics API such
as OpenGL or Direct3D. CUDA, on the other hand, provides a natural extension of C
language that allows a transparent implementation of GPU accelerated algorithms. Also,
DCT8x8 greatly benefits from CUDA-specific features, such as shared memory and explicit
synchronization points.

Figure 1. “Barbara” test image.

September 2013 5

This paper illustrates the concept of highly-parallelized DCT8x8 implementation using
CUDA. Performing DCT8x8 computations on a GPU gives the significant performance
boost even compared to a modern CPU. The proposed approach is illustrated using the
sample code that performs part of JPEG routine: forward DCT8x8, quantization of each
8x8 block followed by the inverse DCT8x8. Finally, the comparison of execution speed is
performed for CPU and GPU implementations. The performance testing is done using
Barbara image from Marco Schmidt's standard test images database (Figure 1). The quality
assurance is done by means of PSNR, the objective visual quality metric.

This paper is organized as follows. Section 2 gives some theoretical background of DCT and
DCT8x8. The proposed implementations are described in Section 3. The evaluation of the
proposed approaches and quality assurance issues are presented in Section 4. Optimization
issues can be found in Section 5, followed by the source code details in Section 6 and the
conclusion in Section 7.

2. DCT Theory

Formally, the discrete cosine transform is an invertible function NNF : or

equivalently an invertible square NN  matrix [1]. The formal definition for the DCT of

one-dimensional sequence of length N is given by the following formula:

1...,,1,0,
2

)12(
cos)()()(

1

0








 
 





Nu
N

ux
xfuuC

N

x


 (1)

The inverse transformation is defined as

1...,,1,0,
2

)12(
cos)()()(

1

0








 






Nx
N

ux
uCuxf

N

u


 (2)

The coefficients at the beginnings of formulae make the transform matrix orthogonal. For
both equations (1) and (2) the coefficients are given by the following notation:

 



















0,
2

0,
1

u
N

u
Nu (3)

As can be seen from (1), the substitution of 0u yields 






1

0

)()0()0(

N

x

xfC  , which is the

mean of the sample. By convention, this value is called the DC coefficient of the transform
and the others are referred to as AC coefficients.

For every value 1...,,1,0  Nu , transform coefficients correspond to a certain waveform.

The first waveform renders a constant value, whereas all other waveforms (1...,,2,1  Nu)

produce a cosine function at increasing frequencies. The output of the transform for each u
is the convolution of the input signal with the corresponding waveform.

Figure 2 shows plots of waveforms mentioned above.

September 2013 6

The two-dimensional DCT for a sample of size NN  is defined as follows:








 







 
 








N

vy

N

ux
yxfvuvuC

N

x

N

y
2

)12(
cos

2

)12(
cos),()()(),(

1

0

1

0


 (4)

The inverse of two-dimensional DCT for a sample of size NN  :








 







 









N

vy

N

ux
vuCvuyxf

N

u

N

v
2

)12(
cos

2

)12(
cos),()()(),(

1

0

1

0


 (5)

Figure 2. 1D basis functions for N=8.

September 2013 7

Separability is an important feature of 2D DCT, and allows expressing equation (4) in the
following form:






















 







 
 









1

0

1

0
2

)12(
cos),(

2

)12(
cos)()(),(

N

y

N

x
N

vx
yxf

N

ux
vuvuC


 (6)

This property yields the simple representation for basis functions of 2D transform; they can
be calculated by multiplication of vertically oriented 1D basis functions (shown in Figure 2

for the case 8N) with their horizontal representations. The visualization of such
representation is plotted on Figure 3. As can be seen from the plot, the basis functions
exhibit a progressive increase in frequency both in the vertical and horizontal directions.

To perform the DCT of length N effectively the cosine values are usually pre-computed

offline. A 1D DCT of size N will require N vectors of N elements to store cosine values

(matrix A). 1D cosine transform can be then represented as a sequence of dot products

between the signal sample (vector x) and cosine values vectors (TA), resulting in

transformed vector xAT .

A 2D approach performs DCT on input sample X by subsequently applying DCT to rows
and columns of the input signal, utilizing the separability property of the transform. In
matrix notation this can be expressed using the following formula:

XAAvuC T),((7)

Figure 3. 2D basis functions for N = 8.

September 2013 8

3. Implementation Details

With advent of CUDA technology it has become possible to perform high-level program
parallelization. Generally, DCT8x8 is a high-level parallelizable algorithm and thus can be
easily programmed with CUDA.

This section presents two different approaches to implementing DCT8x8 using CUDA. The
first one is used to demonstrate CUDA programming model benefits, while the second
allows creating really fast highly optimized kernels. The SDK sample includes 2 kernels
based on the second approach: for the floating point data and for short integer data types
(the routine is similar to that is used in LibJPEG).

In order to avoid confusion some notations need to be introduced:

 Block of pixels of size 8x8 will be further referred to as simply block;

 A set of blocks will be called a macroblock. The number of blocks in a macroblock
denotes the size of a macroblock. The common size of a macroblock is 4 or 16
blocks. The layout of blocks in a macroblock should be given before each usage;

 CUDA threads grouped into execution block will be referred to as CUDA-block.

Implementing DCT by definition

The implementation of DCT8x8 by definition is performed using (7). To convert input 8x8
sample into the transform domain, two matrix multiplications need to be performed.

This solution is never used in practice when calculating DCT8x8 on CPU because it exhibits
high computational complexity relatively to some separable methods. Things are different
with CUDA; the described approach maps nicely to CUDA programming model and
architecture specificity.

Image is split into a set of blocks as shown on Figure 4, left. Each CUDA-block runs 64
threads that perform DCT for a single block. Every thread in a CUDA-block computes a
single DCT coefficient. All waveforms are pre-computed beforehand and stored in the array
located in constant memory. This array can be viewed as a two dimensional array containing

values of basis functions),(uxA one per column (shown in Figure 2).

Two-dimensional DCT is performed in four steps (considering thread-level):

1. A thread with coordinates (ThreadIdx.x, ThreadIdx.y) loads one pixel from a texture
to shared memory. In order to make sure the whole block is loaded to the moment ,
all threads pass synchronization point;

2. The thread computes a dot product between two vectors: ThreadIdx.y column of

cosine coefficients (which is actually the row of TA with the same number) and

ThreadIdx.x column of the input block. To ensure all coefficients of XAT are
calculated, the synchronization must be passed;

3. The thread computes AXAT)(in the same manner as in 2;

September 2013 9

4. The whole block is copied from shared memory to the output in global memory.
Each thread works with the single pixel.

Note: The proposed implementation requires only two 8x8 blocks in shared memory and one
8x8 block in constant memory. The CUDA and the CPU versions can be found in the first

kernel (dct8x8_kernel1.cu) and first reference (gold) functions (DCT8x8_gold.cpp).

Traditional DCT Implementation

DCT is not usually computed by definition. In fact the most common practice is to optimize
computation by avoiding redundant multiplications and utilizing the separability of 2D case.
Such approach has been implemented on GPU in [4] and shows processing speed of 300 Hz
for 512x512 Barbara image.

The proposed approach uses DCT8x8 separability on all levels of detail. An image is split
into a number of macroblocks. To calculate the DCT coefficients for a single block (Figure
4, left) only 8 threads are needed (the whole 1D 8-tap DCT is performed by a thread), so in
order to create enough workload for the GPU, the size of a macroblock must be multiple of
the number of threads within the warp. In case of NVIDIA GeForce 8x series the number
of threads in a warp is 32, which maps to a macroblock of sizes 4x (Figure 4, center, right).
Each thread performs DCT for the row and column corresponding to its ThreadIdx.x
number inside the block with coordinates (ThreadIdx.y, ThreadIdx.z) inside the macroblock.

The reduced computation of 8-point DCT is based on the approach from [3]. The majority
of low-level optimizations that are common in CPU implementations aren’t needed here
since floating point math is native to GPUs and MUL, ADD and MAD operations are
executed with the same speed. The proposed implementation is optimized by the total
amount of described floating point operations. The floating point divisions by constants are
replaced with multiplications by reciprocals or arithmetic shifts.

Barbara image with 8x8 blocks
(1st kernel)

Barbara image split into
macroblocks. Each macroblock
contains 8 blocks (2nd kernel)

Barbara image split into
macroblocks. Each macroblock
contains 16 blocks (short
kernel)

Figure 4. Barbara image split with different grids.

September 2013 10

The described approach takes into account the structure of matrix TA that exhibits high
redundancy and symmetry of matrix elements. It can be presented in the following symbolic
form (the axes of symmetry are drawn with dash line):

















































fdcaacdf

ebbeebbe

dafccfad

cfaddafc

beebbeeb

acdffdca

AT

11111111

11111111

8

1 , (8)

where fedcba ,,,,, stand for (9):


























































16

7
cos2

16

3
cos2

8

3
cos2

8
cos2

16

5
cos2

16
cos2







fc

eb

da

 (9)

Thus, the 8-point DCT equation XAY T can be decomposed in (10):

 
 
 
 

   
   
   
   

 
 
 
 

   
   
   
   
















































































































































34

52

16

70

8

1

7

5

3

1

43

52

61

70

1111

1111

8

1

6

4

2

0

XX

XX

XX

XX

acdf

cfad

dafc

fdca

Y

Y

Y

Y

XX

XX

XX

XX

ebbe

beeb

Y

Y

Y

Y

 (10)

As can be seen from (10), there is still some clear symmetry in the matrix corresponding to

even elements of vector Y , which can be properly utilized.

Note: The proposed implementation requires single macroblock allocated in shared memory and
few floats in constant memory. The CUDA and the CPU versions can be found in the
second kernel (dct8x8_kernel2.cu), short kernel (dct8x8_kernel_short.cu) and second

reference (gold) functions (DCT8x8_gold.cpp).

4. Evaluation

After DCT8x8 is computed, it is possible to perform all sorts of analysis based on its values.
In JPEG compression DCT coefficients are quantized to reduce the amount of information

September 2013 11

that cannot be perceived by the human eye. The compression rate depends on the quantity
of coefficients that are non-zero after quantization has been performed. Roughly speaking to
achieve compression rate of 75 percent (of the initial size), 25 percent of least valuable
coefficients should be zero after quantization step.

This sample is not dedicated to JPEG compression, however to illustrate the use of DCT8x8
an additional step for quantizing DCT coefficients and running inverse DCT8x8 on them is
performed. The resulting image that contains blocking artifact due to quantization is stored
to hard drive.

The evaluation of the sample can be done in several ways: the speedup rate analysis and
consistency checking of CPU and CUDA implementations of the same approach. As for the
first, each implementation outputs the pure processing timing to the console window. The
speedup rate can be measured as the ratio of timings of reference CPU (Gold)
implementation and of CUDA implementation. The consistency checking is the assurance
that both CPU and CUDA implementations of the same approach produce the same output
given the same input. The bitwise check of results may fail here because of possible
differences in floating point operations sequences in both implementations or due to
differences in floating point units. Therefore the consistency checking is performed using
the objective image similarity metric PSNR.

We have chosen PSNR because it is commonly used to evaluate image degradation or
reconstruction quality. PSNR stands for Peak Signal to Noise Ratio and is defined for two
images I and K of size NM  as:

),(
log20),(10

KIMSE

MAX
KIPSNR I (11)

Where I is the original image, K is a reconstructed or noisy approximation, IMAX is the

maximum pixel value in image I and MSE is a mean square error between I and K :












1

0

1

0

2
),(),(

11
),(

M

i

N

j

jiKjiI
NM

KIMSE (12)

PSNR is expressed in decibel scale and takes on positive infinity for identical images. In
image reconstruction typical values for PSNR vary within the range]50,30[. PSNR of 50

and higher calculated from two images that were processed on diverse devices with the same
algorithm says the results are practically identical.

Orig.–Impl. Barbara_512x512 Barbara_1Kx1K Barbara_2Kx2K Barbara_4Kx4K

Gold 1 32.777092 34.612900 36.814545 39.721603

CUDA 1 32.777027 34.612907 36.814545 39.721588

Gold 2 32.777050 34.612888 36.814545 39.721588

CUDA 2 32.777039 34.612885 36.814545 39.721592

Table 1. PSNR between Original and Processed images.

September 2013 12

The consistency checking of CPU and CUDA implementations of both approaches to
DCT8x8 implementation is performed in two steps:

1. PSNR values between the original image and the processed (blocky) results are
calculated. It is natural to expect that these values should be similar for both
implementations. Given Barbara image of size 512x512 as an input, the expected
PSNR values approximate to 32.777.

2. PSNR between images compressed by CPU and CUDA implementations of the
same approach is calculated. Any values above 50 dB are considered as consistent
result, which yields that CUDA implementation works properly.

For Barbara test image the results obtained on step 1 are shown in the Table 1. Comparison
between images processed on CPU and GPU is given in Table 2.

5. Optimization issues

There are several ways to get rid of G8x architecture while developing CUDA kernel. Here
are some of the short paths:

 Eliminate bank conflicts while working with shared memory. This issue was
resolved by padding each row of the macroblock stored in shared memory with one
element. The resulting amount of shared memory used per CUDA-block is
(MACROBLOCK_WIDTH + 1) x MACROBLOCK_HEIGHT. Such
configuration allows simultaneous accessing rows and columns without bank
conflicts. This hack is also used in Transpose SDK sample.

 Access global memory in coalesced manner. In second kernel the copying from
global to shared memory is performed by the same threads that perform 8-tap DCT.
However, this approach doesn’t work for short kernel (each element is 2 bytes
long). It causes 2-way bank conflict (in shared memory) and uncoalesced global
memory access. This issue can be resolved if only half of threads in each block
perform moving of 2 short elements as a single 4-byte element.

 Eliminate all other reasons of warp serialization (non-unified constant memory
access, etc.)

 Maximize GPU occupancy. The value can be calculated using Occupancy
Calculator. Briefly, the value depends on the following parameters:

o Amount of shared memory usage. The more memory is used by CUDA block –
the less amount of CTAs can be launched simultaneously.

GPU–CPU Barbara_512x512 Barbara_1Kx1K Barbara_2Kx2K Barbara_4Kx4K

Impl. 1. 58.613663 62.188042 62.834183 63.089985

Impl. 2. 63.903233 66.192337 66.547394 68.100159

Table 2. PSNR between images processed on diverse architectures

with the same algorithm.

September 2013 13

o Number of registers used per-thread. The occupancy values close to 1.0 can be
reached in case that each cuda thread uses not more than 10 registers per
thread. Note that nvcc has several optimization options (refer nvcc guide).
One can adjust maximum register count per thread using ptxas switch –
maxrregcount=N that forces the compiler to use not more than N registers
per thread. This usually increases slow local storage usage, which can
drastically degrade performance when no local storage had been used.
There are still few ways to decrease registers usage: either by rewriting
portions of the code directly in PTX assembler, or by manually declaring N
variables and assigning all intermediate calculation results to them (this
approach was partially adopted in 2nd and short kernels).

o Amount of threads per block. This parameter often conflicts with shared
memory usage. They have to be adjusted simultaneously.

6. Source Code Details

The whole sample code is documented using Doxygen comments. In order to generate full
project documentation it is necessary to include *.cu files in the set of filetypes containing
code on the generation step.

The sample project is organized as follows:

 Dct8x8.cu is the main file. It should be compiled with nvcc compiler. All CUDA
kernels are described separately and included into Dct8x8.cu

 Dct8x8_kernel1.cu contains the implementation of DCT8x8 by definition.

 Dct8x8_kernel2.cu contains optimized traditional implementation of DCT8x8 for
floats.

 Dct8x8_kernel_short.cu contains optimized traditional implementation of DCT8x8
for short integers.

 Dct8x8_kernel_quantization.cu contains unoptimized routines that perform
quantization of the DCT coefficients.

 Dct8x8_Gold.cpp and Dct8x8_Gold.h contains a gold version of DCT8x8
implemented on the CPU.

 BmpUtil.cpp and BmpUtil.h contain a simple code for loading/saving bitmaps.

Running the sample doesn’t require any additional actions. The program loads Barbara image
from \data folder. It checks that image dimensions are multiples of 8 and launches different
DCT8x8 implementations. DCT8x8, quantizer and inverse DCT8x8 are executed in separate
kernels. Finally, forward DCT8x8 kernel timings are shown both with PSNR values. All
processed images are stored to the hard drive.

Since any image does not necessarily contain an integer number of macroblocks, additional
launching of specific kernels may be needed to process the remaining blocks.

September 2013 14

7. Conclusion

In this paper we proposed two new approaches to calculation of the discrete cosine
transform for 8x8 blocks with NVIDIA CUDA technology. CUDA provides a natural way
of shifting DCT8x8 computation to GPU. Both approaches were implemented for CPU and
GPU. The GPU implementations utilize DCT8x8 separability on high-level, which yields the
significant performance boost even compared to a modern CPU. The proposed approaches
are illustrated using the sample code that performs parts of JPEG compression and
decompression routines. The performance testing was held for both approaches and they
exhibited good speedup rates while keeping objective result quality constant.

References

[1] Syed Ali Khayam. “The Discrete Cosine Transform (DCT): Theory and Application”. ECE
802 – 602: Information Theory and Coding, March 10th 2003.

[2] R. Kresch and N. Merhav, “Fast DCT domain filtering using the DCT and the DST”. HPL
Technical Report #HPL-95-140, December 1995.

[3] Tze-Yun Sung, Yaw-Shih Shieh, Chun-Wang Yu, Hsi-Chin Hsin. “High-Efficiency and
Low-Power Architectures for 2-D DCT and IDCT Based on CORDIC Rotation”. Proceedings
of the 7th ICPDC, pp. 191-196, 2006.

[4] Simon Green. Discrete Cosine Transform GPU implementation.
http://developer.download.nvidia.com/SDK/9.5/Samples/vidimaging_samples.html
#gpgpu_dct

http://developer.download.nvidia.com/SDK/9.5/Samples/vidimaging_samples.html#gpgpu_dct
http://developer.download.nvidia.com/SDK/9.5/Samples/vidimaging_samples.html#gpgpu_dct

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or
registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2008-2013 NVIDIA Corporation. All rights reserved.

