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Abstract 

In this whitepaper the Discrete Cosine Transform (DCT) is discussed. The two-dimensional 
variation of the transform that operates on 8x8 blocks (DCT8x8) is widely used in image and 
video coding because it exhibits high signal decorrelation rates and can be easily 
implemented on the majority of contemporary computing architectures. The key feature of 
the DCT8x8 is that any pair of 8x8 blocks can be processed independently. This makes 
possible fully parallel implementation of DCT8x8 by definition. Most of CPU-based 
implementations of DCT8x8 are firmly adjusted for operating using fixed point arithmetic 
but still appear to be rather costly as soon as blocks are processed in the sequential order by 
the single ALU. Performing DCT8x8 computation on GPU using NVIDIA CUDA 
technology gives significant performance boost even compared to a modern CPU. The 
proposed approach is accompanied with the sample code “DCT8x8” in the NVIDIA 
CUDA SDK. 
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1. Introduction 

The Discrete Cosine Transform (DCT) is a Fourier-like transform, which was first proposed 
by Ahmed et al. (1974). While the Fourier Transform represents a signal as the mixture of 
sines and cosines, the Cosine Transform performs only the cosine-series expansion. The 
purpose of DCT is to perform decorrelation of the input signal and to present the output in 
the frequency domain. The DCT is known for its high “energy compaction” property, 
meaning that the transformed signal can be easily analyzed using few low-frequency 
components. It turns out to be that the DCT is a reasonable balance of optimality of the 
input decorrelation (approaching the Karhunen-Loève transform) and the computational 
complexity. This fact made it widely used in digital signal processing. 

There are several types of DCT [2]. The most popular is two-dimensional symmetric 
variation of the transform that operates on 8x8 blocks (DCT8x8) and its inverse. The 
DCT8x8 is utilized in JPEG compression routines and has become a de-facto standard in 
image and video coding algorithms and other DSP-related areas. The two-dimensional input 
signal is divided into the set of nonoverlapping 8x8 blocks and each block is processed 
independently. This makes it possible to perform the block-wise transform in parallel, which 
is the key feature of the DCT8x8. 

A lot of effort has been put into optimizing DCT routines on existing hardware. Most of the 
CPU implementations of DCT8x8 are well-optimized, which includes the transform 
separability utilization on high-level and fixed point arithmetic, cache-targeted optimizations 
on low-level. On the other hand, the key feature of the DCT8x8 is not utilized in any 
implementation due to architecture limits. However, there is no limit for improvement. 

GPU acceleration of DCT8x8 computation has been possible since appearance of shader 
languages. Nevertheless, this required a specific setup to utilize common graphics API such 
as OpenGL or Direct3D. CUDA, on the other hand, provides a natural extension of C 
language that allows a transparent implementation of GPU accelerated algorithms. Also, 
DCT8x8 greatly benefits from CUDA-specific features, such as shared memory and explicit 
synchronization points. 

 
Figure 1. “Barbara” test image. 
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This paper illustrates the concept of highly-parallelized DCT8x8 implementation using 
CUDA. Performing DCT8x8 computations on a GPU gives the significant performance 
boost even compared to a modern CPU. The proposed approach is illustrated using the 
sample code that performs part of JPEG routine: forward DCT8x8, quantization of each 
8x8 block followed by the inverse DCT8x8. Finally, the comparison of execution speed is 
performed for CPU and GPU implementations. The performance testing is done using 
Barbara image from Marco Schmidt's standard test images database (Figure 1). The quality 
assurance is done by means of PSNR, the objective visual quality metric. 

This paper is organized as follows. Section 2 gives some theoretical background of DCT and 
DCT8x8. The proposed implementations are described in Section 3. The evaluation of the 
proposed approaches and quality assurance issues are presented in Section 4. Optimization 
issues can be found in Section 5, followed by the source code details in Section 6 and the 
conclusion in Section 7. 

2. DCT Theory 

Formally, the discrete cosine transform is an invertible function NNF :  or 

equivalently an invertible square NN   matrix [1]. The formal definition for the DCT of 

one-dimensional sequence of length N  is given by the following formula: 
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The inverse transformation is defined as 
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The coefficients at the beginnings of formulae make the transform matrix orthogonal. For 
both equations (1) and (2) the coefficients are given by the following notation: 
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As can be seen from (1), the substitution of 0u  yields 
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mean of the sample. By convention, this value is called the DC coefficient of the transform 
and the others are referred to as AC coefficients. 

For every value 1...,,1,0  Nu , transform coefficients correspond to a certain waveform. 

The first waveform renders a constant value, whereas all other waveforms ( 1...,,2,1  Nu ) 

produce a cosine function at increasing frequencies. The output of the transform for each u  
is the convolution of the input signal with the corresponding waveform. 

Figure 2 shows plots of waveforms mentioned above. 
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The two-dimensional DCT for a sample of size NN   is defined as follows: 
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The inverse of two-dimensional DCT for a sample of size NN  : 
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Figure 2. 1D basis functions for N=8. 
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Separability is an important feature of 2D DCT, and allows expressing equation (4) in the 
following form: 
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This property yields the simple representation for basis functions of 2D transform; they can 
be calculated by multiplication of vertically oriented 1D basis functions (shown in Figure 2 

for the case 8N ) with their horizontal representations. The visualization of such 
representation is plotted on Figure 3. As can be seen from the plot, the basis functions 
exhibit a progressive increase in frequency both in the vertical and horizontal directions. 

To perform the DCT of length N  effectively the cosine values are usually pre-computed 

offline. A 1D DCT of size N  will require N  vectors of N elements to store cosine values 

(matrix A ). 1D cosine transform can be then represented as a sequence of dot products 

between the signal sample (vector x ) and cosine values vectors ( TA ), resulting in 

transformed vector xAT .  

A 2D approach performs DCT on input sample X  by subsequently applying DCT to rows 
and columns of the input signal, utilizing the separability property of the transform. In 
matrix notation this can be expressed using the following formula: 

XAAvuC T),(  (7) 

 

Figure 3. 2D basis functions for N = 8. 
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3. Implementation Details 

With advent of CUDA technology it has become possible to perform high-level program 
parallelization. Generally, DCT8x8 is a high-level parallelizable algorithm and thus can be 
easily programmed with CUDA. 

This section presents two different approaches to implementing DCT8x8 using CUDA. The 
first one is used to demonstrate CUDA programming model benefits, while the second 
allows creating really fast highly optimized kernels. The SDK sample includes 2 kernels 
based on the second approach: for the floating point data and for short integer data types 
(the routine is similar to that is used in LibJPEG). 

In order to avoid confusion some notations need to be introduced: 

 Block of pixels of size 8x8 will be further referred to as simply block; 

 A set of blocks will be called a macroblock. The number of blocks in a macroblock 
denotes the size of a macroblock. The common size of a macroblock is 4 or 16 
blocks. The layout of blocks in a macroblock should be given before each usage; 

 CUDA threads grouped into execution block will be referred to as CUDA-block.  

Implementing DCT by definition 

The implementation of DCT8x8 by definition is performed using (7). To convert input 8x8 
sample into the transform domain, two matrix multiplications need to be performed.  

This solution is never used in practice when calculating DCT8x8 on CPU because it exhibits 
high computational complexity relatively to some separable methods. Things are different 
with CUDA; the described approach maps nicely to CUDA programming model and 
architecture specificity. 

Image is split into a set of blocks as shown on Figure 4, left. Each CUDA-block runs 64 
threads that perform DCT for a single block. Every thread in a CUDA-block computes a 
single DCT coefficient. All waveforms are pre-computed beforehand and stored in the array 
located in constant memory. This array can be viewed as a two dimensional array containing 

values of basis functions ),( uxA  one per column (shown in Figure 2). 

Two-dimensional DCT is performed in four steps (considering thread-level): 

1. A thread with coordinates (ThreadIdx.x, ThreadIdx.y) loads one pixel from a texture 
to shared memory. In order to make sure the whole block is loaded to the moment , 
all threads pass synchronization point; 

2. The thread computes a dot product between two vectors: ThreadIdx.y column of 

cosine coefficients (which is actually the row of TA with the same number) and 

ThreadIdx.x column of the input block. To ensure all coefficients of XAT are 
calculated, the synchronization must be passed; 

3. The thread computes AXAT )(  in the same manner as in 2; 
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4. The whole block is copied from shared memory to the output in global memory. 
Each thread works with the single pixel. 

Note: The proposed implementation requires only two 8x8 blocks in shared memory and one 
8x8 block in constant memory. The CUDA and the CPU versions can be found in the first 

kernel (dct8x8_kernel1.cu) and first reference (gold) functions (DCT8x8_gold.cpp).  

Traditional DCT Implementation  

DCT is not usually computed by definition. In fact the most common practice is to optimize 
computation by avoiding redundant multiplications and utilizing the separability of 2D case. 
Such approach has been implemented on GPU in [4] and shows processing speed of 300 Hz 
for 512x512 Barbara image.  

The proposed approach uses DCT8x8 separability on all levels of detail. An image is split 
into a number of macroblocks. To calculate the DCT coefficients for a single block (Figure 
4, left) only 8 threads are needed (the whole 1D 8-tap DCT is performed by a thread), so in 
order to create enough workload for the GPU, the size of a macroblock must be multiple of 
the number of threads within the warp. In case of NVIDIA GeForce 8x series the number 
of threads in a warp is 32, which maps to a macroblock of sizes 4x (Figure 4, center, right). 
Each thread performs DCT for the row and column corresponding to its ThreadIdx.x 
number inside the block with coordinates (ThreadIdx.y, ThreadIdx.z) inside the macroblock.  

The reduced computation of 8-point DCT is based on the approach from [3]. The majority 
of low-level optimizations that are common in CPU implementations aren’t needed here 
since floating point math is native to GPUs and MUL, ADD and MAD operations are 
executed with the same speed. The proposed implementation is optimized by the total 
amount of described floating point operations. The floating point divisions by constants are 
replaced with multiplications by reciprocals or arithmetic shifts. 

   

Barbara image with 8x8 blocks 
(1st kernel) 

Barbara image split into 
macroblocks. Each macroblock 
contains 8 blocks (2nd kernel) 

Barbara image split into 
macroblocks. Each macroblock 
contains 16 blocks (short 
kernel) 

 

Figure 4.  Barbara image split with different grids. 
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The described approach takes into account the structure of matrix TA  that exhibits high 
redundancy and symmetry of matrix elements. It can be presented in the following symbolic 
form (the axes of symmetry are drawn with dash line): 
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Thus, the 8-point DCT equation XAY T  can be decomposed in (10): 
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As can be seen from (10), there is still some clear symmetry in the matrix corresponding to 

even elements of vector Y , which can be properly utilized. 

Note: The proposed implementation requires single macroblock allocated in shared memory and 
few floats in constant memory. The CUDA and the CPU versions can be found in the 
second kernel (dct8x8_kernel2.cu), short kernel (dct8x8_kernel_short.cu) and second 

reference (gold) functions (DCT8x8_gold.cpp).  

4. Evaluation 

After DCT8x8 is computed, it is possible to perform all sorts of analysis based on its values. 
In JPEG compression DCT coefficients are quantized to reduce the amount of information 
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that cannot be perceived by the human eye. The compression rate depends on the quantity 
of coefficients that are non-zero after quantization has been performed. Roughly speaking to 
achieve compression rate of 75 percent (of the initial size), 25 percent of least valuable 
coefficients should be zero after quantization step.  

This sample is not dedicated to JPEG compression, however to illustrate the use of DCT8x8 
an additional step for quantizing DCT coefficients and running inverse DCT8x8 on them is 
performed. The resulting image that contains blocking artifact due to quantization is stored 
to hard drive.  

The evaluation of the sample can be done in several ways: the speedup rate analysis and 
consistency checking of CPU and CUDA implementations of the same approach. As for the 
first, each implementation outputs the pure processing timing to the console window. The 
speedup rate can be measured as the ratio of timings of reference CPU (Gold) 
implementation and of CUDA implementation. The consistency checking is the assurance 
that both CPU and CUDA implementations of the same approach produce the same output 
given the same input. The bitwise check of results may fail here because of possible 
differences in floating point operations sequences in both implementations or due to 
differences in floating point units. Therefore the consistency checking is performed using 
the objective image similarity metric PSNR. 

We have chosen PSNR because it is commonly used to evaluate image degradation or 
reconstruction quality. PSNR stands for Peak Signal to Noise Ratio and is defined for two 
images I  and K  of size NM   as: 
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KIPSNR I  (11) 

Where I  is the original image, K  is a reconstructed or noisy approximation, IMAX  is the 

maximum pixel value in image I  and MSE  is a mean square error between I  and K : 
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PSNR is expressed in decibel scale and takes on positive infinity for identical images. In 
image reconstruction typical values for PSNR vary within the range ]50,30[ . PSNR of 50 

and higher calculated from two images that were processed on diverse devices with the same 
algorithm says the results are practically identical.  

Orig.–Impl. Barbara_512x512 Barbara_1Kx1K Barbara_2Kx2K Barbara_4Kx4K 

Gold 1 32.777092 34.612900 36.814545 39.721603 

CUDA 1 32.777027 34.612907 36.814545 39.721588 

Gold 2 32.777050 34.612888 36.814545 39.721588 

CUDA 2 32.777039 34.612885 36.814545 39.721592 
 

Table 1.  PSNR between Original and Processed images. 
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The consistency checking of CPU and CUDA implementations of both approaches to 
DCT8x8 implementation is performed in two steps: 

1. PSNR values between the original image and the processed (blocky) results are 
calculated. It is natural to expect that these values should be similar for both 
implementations. Given Barbara image of size 512x512 as an input, the expected 
PSNR values approximate to 32.777. 

2. PSNR between images compressed by CPU and CUDA implementations of the 
same approach is calculated. Any values above 50 dB are considered as consistent 
result, which yields that CUDA implementation works properly. 

For Barbara test image the results obtained on step 1 are shown in the Table 1. Comparison 
between images processed on CPU and GPU is given in Table 2. 

5. Optimization issues 

There are several ways to get rid of G8x architecture while developing CUDA kernel. Here 
are some of the short paths: 

 Eliminate bank conflicts while working with shared memory. This issue was 
resolved by padding each row of the macroblock stored in shared memory with one 
element. The resulting amount of shared memory used per CUDA-block is 
(MACROBLOCK_WIDTH + 1) x MACROBLOCK_HEIGHT. Such 
configuration allows simultaneous accessing rows and columns without bank 
conflicts. This hack is also used in Transpose SDK sample.  

 Access global memory in coalesced manner. In second kernel the copying from 
global to shared memory is performed by the same threads that perform 8-tap DCT. 
However, this approach doesn’t work for short kernel (each element is 2 bytes 
long). It causes 2-way bank conflict (in shared memory) and uncoalesced global 
memory access. This issue can be resolved if only half of threads in each block 
perform moving of 2 short elements as a single 4-byte element. 

 Eliminate all other reasons of warp serialization (non-unified constant memory 
access, etc.) 

 Maximize GPU occupancy. The value can be calculated using Occupancy 
Calculator. Briefly, the value depends on the following parameters: 

o Amount of shared memory usage. The more memory is used by CUDA block – 
the less amount of CTAs can be launched simultaneously.  

GPU–CPU Barbara_512x512 Barbara_1Kx1K Barbara_2Kx2K Barbara_4Kx4K 

Impl. 1. 58.613663 62.188042 62.834183 63.089985 

Impl. 2. 63.903233 66.192337 66.547394 68.100159 
 

Table 2.  PSNR between images processed on diverse architectures  

with the same algorithm. 



  

    

 

 

September 2013 13 

o Number of registers used per-thread. The occupancy values close to 1.0 can be 
reached in case that each cuda thread uses not more than 10 registers per 
thread. Note that nvcc has several optimization options (refer nvcc guide). 
One can adjust maximum register count per thread using ptxas switch –
maxrregcount=N that forces the compiler to use not more than N registers 
per thread. This usually increases slow local storage usage, which can 
drastically degrade performance when no local storage had been used. 
There are still few ways to decrease registers usage: either by rewriting 
portions of the code directly in PTX assembler, or by manually declaring N 
variables and assigning all intermediate calculation results to them (this 
approach was partially adopted in 2nd and short kernels). 

o Amount of threads per block. This parameter often conflicts with shared 
memory usage. They have to be adjusted simultaneously. 

6. Source Code Details 

The whole sample code is documented using Doxygen comments. In order to generate full 
project documentation it is necessary to include *.cu files in the set of filetypes containing 
code on the generation step. 

The sample project is organized as follows: 

 Dct8x8.cu is the main file. It should be compiled with nvcc compiler. All CUDA 
kernels are described separately and included into Dct8x8.cu 

 Dct8x8_kernel1.cu contains the implementation of DCT8x8 by definition.  

 Dct8x8_kernel2.cu contains optimized traditional implementation of DCT8x8 for 
floats. 

 Dct8x8_kernel_short.cu contains optimized traditional implementation of DCT8x8 
for short integers. 

 Dct8x8_kernel_quantization.cu contains unoptimized routines that perform 
quantization of the DCT coefficients. 

 Dct8x8_Gold.cpp and Dct8x8_Gold.h contains a gold version of DCT8x8 
implemented on the CPU. 

 BmpUtil.cpp and BmpUtil.h contain a simple code for loading/saving bitmaps. 

Running the sample doesn’t require any additional actions. The program loads Barbara image 
from \data folder. It checks that image dimensions are multiples of 8 and launches different 
DCT8x8 implementations. DCT8x8, quantizer and inverse DCT8x8 are executed in separate 
kernels. Finally, forward DCT8x8 kernel timings are shown both with PSNR values. All 
processed images are stored to the hard drive. 

Since any image does not necessarily contain an integer number of macroblocks, additional 
launching of specific kernels may be needed to process the remaining blocks.  
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7. Conclusion 

In this paper we proposed two new approaches to calculation of the discrete cosine 
transform for 8x8 blocks with NVIDIA CUDA technology. CUDA provides a natural way 
of shifting DCT8x8 computation to GPU. Both approaches were implemented for CPU and 
GPU. The GPU implementations utilize DCT8x8 separability on high-level, which yields the 
significant performance boost even compared to a modern CPU. The proposed approaches 
are illustrated using the sample code that performs parts of JPEG compression and 
decompression routines. The performance testing was held for both approaches and they 
exhibited good speedup rates while keeping objective result quality constant. 
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