/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* Image box filtering example This sample uses CUDA to perform a simple box filter on an image and uses OpenGL to display the results. It processes rows and columns of the image in parallel. The box filter is implemented such that it has a constant cost, regardless of the filter width. Press '=' to increment the filter radius, '-' to decrease it Version 1.1 - modified to process 8-bit RGBA images */ // OpenGL Graphics includes #include #if defined(__APPLE__) || defined(__MACOSX) #pragma clang diagnostic ignored "-Wdeprecated-declarations" #include #ifndef glutCloseFunc #define glutCloseFunc glutWMCloseFunc #endif #else #include #endif // CUDA utilities and system includes #include #include // Helper functions #include // CUDA SDK Helper functions #include // CUDA device initialization helper functions #define MAX_EPSILON_ERROR 5.0f #define REFRESH_DELAY 10 // ms const static char *sSDKsample = "CUDA Iterative Box Filter"; // Define the files that are to be save and the reference images for validation const char *sOriginal[] = {"lenaRGB_14.ppm", "lenaRGB_22.ppm", NULL}; const char *sReference[] = {"ref_14.ppm", "ref_22.ppm", NULL}; const char *image_filename = "lenaRGB.ppm"; int iterations = 1; int filter_radius = 14; int nthreads = 64; unsigned int width, height; unsigned int *h_img = NULL; unsigned int *d_img = NULL; unsigned int *d_temp = NULL; GLuint pbo; // OpenGL pixel buffer object struct cudaGraphicsResource *cuda_pbo_resource; // handles OpenGL-CUDA exchange GLuint texid; // Texture GLuint shader; StopWatchInterface *timer = NULL, *kernel_timer = NULL; // Auto-Verification Code int fpsCount = 0; // FPS count for averaging int fpsLimit = 8; // FPS limit for sampling int g_Index = 0; int g_nFilterSign = 1; float avgFPS = 0.0f; unsigned int frameCount = 0; unsigned int g_TotalErrors = 0; bool g_bInteractive = false; int *pArgc = NULL; char **pArgv = NULL; extern "C" int runSingleTest(char *ref_file, char *exec_path); extern "C" int runBenchmark(); extern "C" void loadImageData(int argc, char **argv); extern "C" void computeGold(float *id, float *od, int w, int h, int n); // These are CUDA functions to handle allocation and launching the kernels extern "C" void initTexture(int width, int height, void *pImage, bool useRGBA); extern "C" void freeTextures(); extern "C" double boxFilter(float *d_src, float *d_temp, float *d_dest, int width, int height, int radius, int iterations, int nthreads, StopWatchInterface *timer); extern "C" double boxFilterRGBA(unsigned int *d_src, unsigned int *d_temp, unsigned int *d_dest, int width, int height, int radius, int iterations, int nthreads, StopWatchInterface *timer); // This varies the filter radius, so we can see automatic animation void varySigma() { filter_radius += g_nFilterSign; if (filter_radius > 64) { filter_radius = 64; // clamp to 64 and then negate sign g_nFilterSign = -1; } else if (filter_radius < 0) { filter_radius = 0; g_nFilterSign = 1; } } // Calculate the Frames per second and print in the title bar void computeFPS() { frameCount++; fpsCount++; if (fpsCount == fpsLimit) { avgFPS = 1.0f / (sdkGetAverageTimerValue(&timer) / 1000.0f); fpsCount = 0; fpsLimit = (int)MAX(avgFPS, 1.0f); sdkResetTimer(&timer); } char fps[256]; sprintf(fps, "CUDA Rolling Box Filter (radius=%d, passes=%d): " "%3.1f fps", (!g_bInteractive ? "ON" : "OFF"), filter_radius, iterations, avgFPS); glutSetWindowTitle(fps); if (!g_bInteractive) { varySigma(); } } // display results using OpenGL void display() { sdkStartTimer(&timer); // execute filter, writing results to pbo unsigned int *d_result; checkCudaErrors(cudaGraphicsMapResources(1, &cuda_pbo_resource, 0)); size_t num_bytes; checkCudaErrors(cudaGraphicsResourceGetMappedPointer( (void **)&d_result, &num_bytes, cuda_pbo_resource)); boxFilterRGBA(d_img, d_temp, d_result, width, height, filter_radius, iterations, nthreads, kernel_timer); checkCudaErrors(cudaGraphicsUnmapResources(1, &cuda_pbo_resource, 0)); // OpenGL display code path { glClear(GL_COLOR_BUFFER_BIT); // load texture from pbo glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo); glBindTexture(GL_TEXTURE_2D, texid); glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, width, height, GL_RGBA, GL_UNSIGNED_BYTE, 0); glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0); // fragment program is required to display floating point texture glBindProgramARB(GL_FRAGMENT_PROGRAM_ARB, shader); glEnable(GL_FRAGMENT_PROGRAM_ARB); glDisable(GL_DEPTH_TEST); glBegin(GL_QUADS); { glTexCoord2f(0.0f, 0.0f); glVertex2f(0.0f, 0.0f); glTexCoord2f(1.0f, 0.0f); glVertex2f(1.0f, 0.0f); glTexCoord2f(1.0f, 1.0f); glVertex2f(1.0f, 1.0f); glTexCoord2f(0.0f, 1.0f); glVertex2f(0.0f, 1.0f); } glEnd(); glBindTexture(GL_TEXTURE_2D, 0); glDisable(GL_FRAGMENT_PROGRAM_ARB); } glutSwapBuffers(); glutReportErrors(); sdkStopTimer(&timer); computeFPS(); } // Keyboard callback function for OpenGL (GLUT) void keyboard(unsigned char key, int /*x*/, int /*y*/) { switch (key) { case 27: #if defined(__APPLE__) || defined(MACOSX) exit(EXIT_SUCCESS); #else glutDestroyWindow(glutGetWindow()); return; #endif break; case 'a': case 'A': g_bInteractive = !g_bInteractive; printf("> Animation is %s\n", !g_bInteractive ? "ON" : "OFF"); break; case '=': case '+': if (filter_radius < (int)width - 1 && filter_radius < (int)height - 1) { filter_radius++; } break; case '-': if (filter_radius > 1) { filter_radius--; } break; case ']': iterations++; break; case '[': if (iterations > 1) { iterations--; } break; default: break; } printf("radius = %d, iterations = %d\n", filter_radius, iterations); } // Timer Event so we can refresh the display void timerEvent(int value) { if (glutGetWindow()) { glutPostRedisplay(); glutTimerFunc(REFRESH_DELAY, timerEvent, 0); } } // Resizing the window void reshape(int x, int y) { glViewport(0, 0, x, y); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrtho(0.0, 1.0, 0.0, 1.0, 0.0, 1.0); } void initCuda(bool useRGBA) { // allocate device memory checkCudaErrors( cudaMalloc((void **)&d_img, (width * height * sizeof(unsigned int)))); checkCudaErrors( cudaMalloc((void **)&d_temp, (width * height * sizeof(unsigned int)))); // Refer to boxFilter_kernel.cu for implementation initTexture(width, height, h_img, useRGBA); sdkCreateTimer(&timer); sdkCreateTimer(&kernel_timer); } void cleanup() { sdkDeleteTimer(&timer); sdkDeleteTimer(&kernel_timer); if (h_img) { free(h_img); h_img = NULL; } if (d_img) { cudaFree(d_img); d_img = NULL; } if (d_temp) { cudaFree(d_temp); d_temp = NULL; } // Refer to boxFilter_kernel.cu for implementation freeTextures(); cudaGraphicsUnregisterResource(cuda_pbo_resource); glDeleteBuffers(1, &pbo); glDeleteTextures(1, &texid); glDeleteProgramsARB(1, &shader); } // shader for displaying floating-point texture static const char *shader_code = "!!ARBfp1.0\n" "TEX result.color, fragment.texcoord, texture[0], 2D; \n" "END"; GLuint compileASMShader(GLenum program_type, const char *code) { GLuint program_id; glGenProgramsARB(1, &program_id); glBindProgramARB(program_type, program_id); glProgramStringARB(program_type, GL_PROGRAM_FORMAT_ASCII_ARB, (GLsizei)strlen(code), (GLubyte *)code); GLint error_pos; glGetIntegerv(GL_PROGRAM_ERROR_POSITION_ARB, &error_pos); if (error_pos != -1) { const GLubyte *error_string; error_string = glGetString(GL_PROGRAM_ERROR_STRING_ARB); printf("Program error at position: %d\n%s\n", (int)error_pos, error_string); return 0; } return program_id; } // This is where we create the OpenGL PBOs, FBOs, and texture resources void initGLResources() { // create pixel buffer object glGenBuffers(1, &pbo); glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, pbo); glBufferData(GL_PIXEL_UNPACK_BUFFER_ARB, width * height * sizeof(GLubyte) * 4, h_img, GL_STREAM_DRAW_ARB); glBindBuffer(GL_PIXEL_UNPACK_BUFFER_ARB, 0); checkCudaErrors(cudaGraphicsGLRegisterBuffer( &cuda_pbo_resource, pbo, cudaGraphicsMapFlagsWriteDiscard)); // create texture for display glGenTextures(1, &texid); glBindTexture(GL_TEXTURE_2D, texid); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA8, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST); glBindTexture(GL_TEXTURE_2D, 0); // load shader program shader = compileASMShader(GL_FRAGMENT_PROGRAM_ARB, shader_code); } void initGL(int *argc, char **argv) { // initialize GLUT glutInit(argc, argv); glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE); glutInitWindowSize(768, 768); glutCreateWindow("CUDA Rolling Box Filter"); glutDisplayFunc(display); glutKeyboardFunc(keyboard); glutReshapeFunc(reshape); glutTimerFunc(REFRESH_DELAY, timerEvent, 0); if (!isGLVersionSupported(2, 0) || !areGLExtensionsSupported( "GL_ARB_vertex_buffer_object GL_ARB_pixel_buffer_object")) { printf("Error: failed to get minimal extensions for demo\n"); printf("This sample requires:\n"); printf(" OpenGL version 2.0\n"); printf(" GL_ARB_vertex_buffer_object\n"); printf(" GL_ARB_pixel_buffer_object\n"); exit(EXIT_FAILURE); } } //////////////////////////////////////////////////////////////////////////////// //! Run a simple benchmark test for CUDA //////////////////////////////////////////////////////////////////////////////// int runBenchmark() { printf("[runBenchmark]: [%s]\n", sSDKsample); initCuda(true); unsigned int *d_result; checkCudaErrors( cudaMalloc((void **)&d_result, width * height * sizeof(unsigned int))); // warm-up boxFilterRGBA(d_img, d_temp, d_temp, width, height, filter_radius, iterations, nthreads, kernel_timer); checkCudaErrors(cudaDeviceSynchronize()); sdkStartTimer(&kernel_timer); // Start round-trip timer and process iCycles loops on the GPU iterations = 1; // standard 1-pass filtering const int iCycles = 150; double dProcessingTime = 0.0; printf("\nRunning BoxFilterGPU for %d cycles...\n\n", iCycles); for (int i = 0; i < iCycles; i++) { dProcessingTime += boxFilterRGBA(d_img, d_temp, d_img, width, height, filter_radius, iterations, nthreads, kernel_timer); } // check if kernel execution generated an error and sync host getLastCudaError("Error: boxFilterRGBA Kernel execution FAILED"); checkCudaErrors(cudaDeviceSynchronize()); sdkStopTimer(&kernel_timer); // Get average computation time dProcessingTime /= (double)iCycles; // log testname, throughput, timing and config info to sample and master logs printf( "boxFilter-texture, Throughput = %.4f M RGBA Pixels/s, Time = %.5f s, " "Size = %u RGBA Pixels, NumDevsUsed = %u, Workgroup = %u\n", (1.0e-6 * width * height) / dProcessingTime, dProcessingTime, (width * height), 1, nthreads); printf("\n"); return 0; } // This test specifies a single test (where you specify radius and/or // iterations) int runSingleTest(char *ref_file, char *exec_path) { int nTotalErrors = 0; char dump_file[256]; printf("[runSingleTest]: [%s]\n", sSDKsample); initCuda(true); unsigned int *d_result; unsigned int *h_result = (unsigned int *)malloc(width * height * sizeof(unsigned int)); checkCudaErrors( cudaMalloc((void **)&d_result, width * height * sizeof(unsigned int))); // run the sample radius { printf("%s (radius=%d) (passes=%d) ", sSDKsample, filter_radius, iterations); boxFilterRGBA(d_img, d_temp, d_result, width, height, filter_radius, iterations, nthreads, kernel_timer); // check if kernel execution generated an error getLastCudaError("Error: boxFilterRGBA Kernel execution FAILED"); checkCudaErrors(cudaDeviceSynchronize()); // readback the results to system memory cudaMemcpy((unsigned char *)h_result, (unsigned char *)d_result, width * height * sizeof(unsigned int), cudaMemcpyDeviceToHost); sprintf(dump_file, "lenaRGB_%02d.ppm", filter_radius); sdkSavePPM4ub((const char *)dump_file, (unsigned char *)h_result, width, height); if (!sdkComparePPM(dump_file, sdkFindFilePath(ref_file, exec_path), MAX_EPSILON_ERROR, 0.15f, false)) { printf("Image is Different "); nTotalErrors++; } else { printf("Image is Matching "); } printf(" <%s>\n", ref_file); } printf("\n"); free(h_result); checkCudaErrors(cudaFree(d_result)); return nTotalErrors; } void loadImageData(int argc, char **argv) { // load image (needed so we can get the width and height before we create the // window char *image_path = NULL; if (argc >= 1) { image_path = sdkFindFilePath(image_filename, argv[0]); } if (image_path == 0) { printf("Error finding image file '%s'\n", image_filename); exit(EXIT_FAILURE); } sdkLoadPPM4(image_path, (unsigned char **)&h_img, &width, &height); if (!h_img) { printf("Error opening file '%s'\n", image_path); exit(EXIT_FAILURE); } printf("Loaded '%s', %d x %d pixels\n", image_path, width, height); } void printHelp() { printf("boxFilter usage\n"); printf(" -threads=n (specify the # of of threads to use)\n"); printf(" -radius=n (specify the filter radius n to use)\n"); printf(" -passes=n (specify the number of passes n to use)\n"); printf(" -file=name (specify reference file for comparison)\n"); } //////////////////////////////////////////////////////////////////////////////// // Program main //////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { int devID = 0; char *ref_file = NULL; #if defined(__linux__) setenv("DISPLAY", ":0", 0); #endif pArgc = &argc; pArgv = argv; // start logs printf("%s Starting...\n\n", argv[0]); if (checkCmdLineFlag(argc, (const char **)argv, "help")) { printHelp(); exit(EXIT_SUCCESS); } // use command-line specified CUDA device, otherwise use device with highest // Gflops/s if (argc > 1) { if (checkCmdLineFlag(argc, (const char **)argv, "threads")) { nthreads = getCmdLineArgumentInt(argc, (const char **)argv, "threads"); } if (checkCmdLineFlag(argc, (const char **)argv, "radius")) { filter_radius = getCmdLineArgumentInt(argc, (const char **)argv, "radius"); } if (checkCmdLineFlag(argc, (const char **)argv, "passes")) { iterations = getCmdLineArgumentInt(argc, (const char **)argv, "passes"); } if (checkCmdLineFlag(argc, (const char **)argv, "file")) { getCmdLineArgumentString(argc, (const char **)argv, "file", (char **)&ref_file); } } // load image to process loadImageData(argc, argv); devID = findCudaDevice(argc, (const char **)argv); if (checkCmdLineFlag(argc, (const char **)argv, "benchmark")) { // This is a separate mode of the sample, where we are benchmark the kernels // for performance // Running CUDA kernels (boxfilter) in Benchmarking mode g_TotalErrors += runBenchmark(); exit(g_TotalErrors == 0 ? EXIT_SUCCESS : EXIT_FAILURE); } else if (checkCmdLineFlag(argc, (const char **)argv, "radius") || checkCmdLineFlag(argc, (const char **)argv, "passes")) { // This overrides the default mode. Users can specify the radius used by // the filter kernel g_TotalErrors += runSingleTest(ref_file, argv[0]); exit(g_TotalErrors == 0 ? EXIT_SUCCESS : EXIT_FAILURE); } else { // Default mode running with OpenGL visualization and in automatic mode // the output automatically changes animation printf("\n"); initGL(&argc, argv); initCuda(true); initGLResources(); // sets the callback function so it will call cleanup upon exit #if defined(__APPLE__) || defined(MACOSX) atexit(cleanup); #else glutCloseFunc(cleanup); #endif printf("Running Standard Demonstration with GLUT loop...\n\n"); printf( "Press '+' and '-' to change filter width\n" "Press ']' and '[' to change number of iterations\n" "Press 'a' or 'A' to change animation ON/OFF\n\n"); // Main OpenGL loop that will run visualization for every vsync glutMainLoop(); } }