/* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* This sample queries the properties of the CUDA devices present in the system * via CUDA Runtime API. */ // std::system includes #include #include #include #include #include int *pArgc = NULL; char **pArgv = NULL; #if CUDART_VERSION < 5000 // CUDA-C includes #include // This function wraps the CUDA Driver API into a template function template inline void getCudaAttribute(T *attribute, CUdevice_attribute device_attribute, int device) { CUresult error = cuDeviceGetAttribute(attribute, device_attribute, device); if (CUDA_SUCCESS != error) { fprintf( stderr, "cuSafeCallNoSync() Driver API error = %04d from file <%s>, line %i.\n", error, __FILE__, __LINE__); exit(EXIT_FAILURE); } } #endif /* CUDART_VERSION < 5000 */ //////////////////////////////////////////////////////////////////////////////// // Program main //////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { pArgc = &argc; pArgv = argv; printf("%s Starting...\n\n", argv[0]); printf( " CUDA Device Query (Runtime API) version (CUDART static linking)\n\n"); int deviceCount = 0; cudaError_t error_id = cudaGetDeviceCount(&deviceCount); if (error_id != cudaSuccess) { printf("cudaGetDeviceCount returned %d\n-> %s\n", static_cast(error_id), cudaGetErrorString(error_id)); printf("Result = FAIL\n"); exit(EXIT_FAILURE); } // This function call returns 0 if there are no CUDA capable devices. if (deviceCount == 0) { printf("There are no available device(s) that support CUDA\n"); } else { printf("Detected %d CUDA Capable device(s)\n", deviceCount); } int dev, driverVersion = 0, runtimeVersion = 0; for (dev = 0; dev < deviceCount; ++dev) { cudaSetDevice(dev); cudaDeviceProp deviceProp; cudaGetDeviceProperties(&deviceProp, dev); printf("\nDevice %d: \"%s\"\n", dev, deviceProp.name); // Console log cudaDriverGetVersion(&driverVersion); cudaRuntimeGetVersion(&runtimeVersion); printf(" CUDA Driver Version / Runtime Version %d.%d / %d.%d\n", driverVersion / 1000, (driverVersion % 100) / 10, runtimeVersion / 1000, (runtimeVersion % 100) / 10); printf(" CUDA Capability Major/Minor version number: %d.%d\n", deviceProp.major, deviceProp.minor); char msg[256]; #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) sprintf_s(msg, sizeof(msg), " Total amount of global memory: %.0f MBytes " "(%llu bytes)\n", static_cast(deviceProp.totalGlobalMem / 1048576.0f), (unsigned long long)deviceProp.totalGlobalMem); #else snprintf(msg, sizeof(msg), " Total amount of global memory: %.0f MBytes " "(%llu bytes)\n", static_cast(deviceProp.totalGlobalMem / 1048576.0f), (unsigned long long)deviceProp.totalGlobalMem); #endif printf("%s", msg); printf(" (%03d) Multiprocessors, (%03d) CUDA Cores/MP: %d CUDA Cores\n", deviceProp.multiProcessorCount, _ConvertSMVer2Cores(deviceProp.major, deviceProp.minor), _ConvertSMVer2Cores(deviceProp.major, deviceProp.minor) * deviceProp.multiProcessorCount); printf( " GPU Max Clock rate: %.0f MHz (%0.2f " "GHz)\n", deviceProp.clockRate * 1e-3f, deviceProp.clockRate * 1e-6f); #if CUDART_VERSION >= 5000 // This is supported in CUDA 5.0 (runtime API device properties) printf(" Memory Clock rate: %.0f Mhz\n", deviceProp.memoryClockRate * 1e-3f); printf(" Memory Bus Width: %d-bit\n", deviceProp.memoryBusWidth); if (deviceProp.l2CacheSize) { printf(" L2 Cache Size: %d bytes\n", deviceProp.l2CacheSize); } #else // This only available in CUDA 4.0-4.2 (but these were only exposed in the // CUDA Driver API) int memoryClock; getCudaAttribute(&memoryClock, CU_DEVICE_ATTRIBUTE_MEMORY_CLOCK_RATE, dev); printf(" Memory Clock rate: %.0f Mhz\n", memoryClock * 1e-3f); int memBusWidth; getCudaAttribute(&memBusWidth, CU_DEVICE_ATTRIBUTE_GLOBAL_MEMORY_BUS_WIDTH, dev); printf(" Memory Bus Width: %d-bit\n", memBusWidth); int L2CacheSize; getCudaAttribute(&L2CacheSize, CU_DEVICE_ATTRIBUTE_L2_CACHE_SIZE, dev); if (L2CacheSize) { printf(" L2 Cache Size: %d bytes\n", L2CacheSize); } #endif printf( " Maximum Texture Dimension Size (x,y,z) 1D=(%d), 2D=(%d, " "%d), 3D=(%d, %d, %d)\n", deviceProp.maxTexture1D, deviceProp.maxTexture2D[0], deviceProp.maxTexture2D[1], deviceProp.maxTexture3D[0], deviceProp.maxTexture3D[1], deviceProp.maxTexture3D[2]); printf( " Maximum Layered 1D Texture Size, (num) layers 1D=(%d), %d layers\n", deviceProp.maxTexture1DLayered[0], deviceProp.maxTexture1DLayered[1]); printf( " Maximum Layered 2D Texture Size, (num) layers 2D=(%d, %d), %d " "layers\n", deviceProp.maxTexture2DLayered[0], deviceProp.maxTexture2DLayered[1], deviceProp.maxTexture2DLayered[2]); printf(" Total amount of constant memory: %zu bytes\n", deviceProp.totalConstMem); printf(" Total amount of shared memory per block: %zu bytes\n", deviceProp.sharedMemPerBlock); printf(" Total shared memory per multiprocessor: %zu bytes\n", deviceProp.sharedMemPerMultiprocessor); printf(" Total number of registers available per block: %d\n", deviceProp.regsPerBlock); printf(" Warp size: %d\n", deviceProp.warpSize); printf(" Maximum number of threads per multiprocessor: %d\n", deviceProp.maxThreadsPerMultiProcessor); printf(" Maximum number of threads per block: %d\n", deviceProp.maxThreadsPerBlock); printf(" Max dimension size of a thread block (x,y,z): (%d, %d, %d)\n", deviceProp.maxThreadsDim[0], deviceProp.maxThreadsDim[1], deviceProp.maxThreadsDim[2]); printf(" Max dimension size of a grid size (x,y,z): (%d, %d, %d)\n", deviceProp.maxGridSize[0], deviceProp.maxGridSize[1], deviceProp.maxGridSize[2]); printf(" Maximum memory pitch: %zu bytes\n", deviceProp.memPitch); printf(" Texture alignment: %zu bytes\n", deviceProp.textureAlignment); printf( " Concurrent copy and kernel execution: %s with %d copy " "engine(s)\n", (deviceProp.deviceOverlap ? "Yes" : "No"), deviceProp.asyncEngineCount); printf(" Run time limit on kernels: %s\n", deviceProp.kernelExecTimeoutEnabled ? "Yes" : "No"); printf(" Integrated GPU sharing Host Memory: %s\n", deviceProp.integrated ? "Yes" : "No"); printf(" Support host page-locked memory mapping: %s\n", deviceProp.canMapHostMemory ? "Yes" : "No"); printf(" Alignment requirement for Surfaces: %s\n", deviceProp.surfaceAlignment ? "Yes" : "No"); printf(" Device has ECC support: %s\n", deviceProp.ECCEnabled ? "Enabled" : "Disabled"); #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) printf(" CUDA Device Driver Mode (TCC or WDDM): %s\n", deviceProp.tccDriver ? "TCC (Tesla Compute Cluster Driver)" : "WDDM (Windows Display Driver Model)"); #endif printf(" Device supports Unified Addressing (UVA): %s\n", deviceProp.unifiedAddressing ? "Yes" : "No"); printf(" Device supports Managed Memory: %s\n", deviceProp.managedMemory ? "Yes" : "No"); printf(" Device supports Compute Preemption: %s\n", deviceProp.computePreemptionSupported ? "Yes" : "No"); printf(" Supports Cooperative Kernel Launch: %s\n", deviceProp.cooperativeLaunch ? "Yes" : "No"); printf(" Supports MultiDevice Co-op Kernel Launch: %s\n", deviceProp.cooperativeMultiDeviceLaunch ? "Yes" : "No"); printf(" Device PCI Domain ID / Bus ID / location ID: %d / %d / %d\n", deviceProp.pciDomainID, deviceProp.pciBusID, deviceProp.pciDeviceID); const char *sComputeMode[] = { "Default (multiple host threads can use ::cudaSetDevice() with device " "simultaneously)", "Exclusive (only one host thread in one process is able to use " "::cudaSetDevice() with this device)", "Prohibited (no host thread can use ::cudaSetDevice() with this " "device)", "Exclusive Process (many threads in one process is able to use " "::cudaSetDevice() with this device)", "Unknown", NULL}; printf(" Compute Mode:\n"); printf(" < %s >\n", sComputeMode[deviceProp.computeMode]); } // If there are 2 or more GPUs, query to determine whether RDMA is supported if (deviceCount >= 2) { cudaDeviceProp prop[64]; int gpuid[64]; // we want to find the first two GPUs that can support P2P int gpu_p2p_count = 0; for (int i = 0; i < deviceCount; i++) { checkCudaErrors(cudaGetDeviceProperties(&prop[i], i)); // Only boards based on Fermi or later can support P2P if ((prop[i].major >= 2) #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) // on Windows (64-bit), the Tesla Compute Cluster driver for windows // must be enabled to support this && prop[i].tccDriver #endif ) { // This is an array of P2P capable GPUs gpuid[gpu_p2p_count++] = i; } } // Show all the combinations of support P2P GPUs int can_access_peer; if (gpu_p2p_count >= 2) { for (int i = 0; i < gpu_p2p_count; i++) { for (int j = 0; j < gpu_p2p_count; j++) { if (gpuid[i] == gpuid[j]) { continue; } checkCudaErrors( cudaDeviceCanAccessPeer(&can_access_peer, gpuid[i], gpuid[j])); printf("> Peer access from %s (GPU%d) -> %s (GPU%d) : %s\n", prop[gpuid[i]].name, gpuid[i], prop[gpuid[j]].name, gpuid[j], can_access_peer ? "Yes" : "No"); } } } } // csv masterlog info // ***************************** // exe and CUDA driver name printf("\n"); std::string sProfileString = "deviceQuery, CUDA Driver = CUDART"; char cTemp[16]; // driver version sProfileString += ", CUDA Driver Version = "; #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) sprintf_s(cTemp, 10, "%d.%d", driverVersion / 1000, (driverVersion % 100) / 10); #else snprintf(cTemp, sizeof(cTemp), "%d.%d", driverVersion / 1000, (driverVersion % 100) / 10); #endif sProfileString += cTemp; // Runtime version sProfileString += ", CUDA Runtime Version = "; #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) sprintf_s(cTemp, 10, "%d.%d", runtimeVersion / 1000, (runtimeVersion % 100) / 10); #else snprintf(cTemp, sizeof(cTemp), "%d.%d", runtimeVersion / 1000, (runtimeVersion % 100) / 10); #endif sProfileString += cTemp; // Device count sProfileString += ", NumDevs = "; #if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64) sprintf_s(cTemp, 10, "%d", deviceCount); #else snprintf(cTemp, sizeof(cTemp), "%d", deviceCount); #endif sProfileString += cTemp; sProfileString += "\n"; printf("%s", sProfileString.c_str()); printf("Result = PASS\n"); // finish exit(EXIT_SUCCESS); }