/* Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This sample implements a conjugate gradient solver on multiple GPU using * Multi Device Cooperative Groups, also uses Unified Memory optimized using * prefetching and usage hints. * */ // includes, system #include #include #include #include #include #include // Utilities and system includes #include // helper function CUDA error checking and initialization #include // helper for shared functions common to CUDA Samples #include namespace cg = cooperative_groups; const char *sSDKname = "conjugateGradientMultiDeviceCG"; #define ENABLE_CPU_DEBUG_CODE 0 #define THREADS_PER_BLOCK 512 __device__ double grid_dot_result = 0.0; /* genTridiag: generate a random tridiagonal symmetric matrix */ void genTridiag(int *I, int *J, float *val, int N, int nz) { I[0] = 0, J[0] = 0, J[1] = 1; val[0] = static_cast(rand()) / RAND_MAX + 10.0f; val[1] = static_cast(rand()) / RAND_MAX; int start; for (int i = 1; i < N; i++) { if (i > 1) { I[i] = I[i - 1] + 3; } else { I[1] = 2; } start = (i - 1) * 3 + 2; J[start] = i - 1; J[start + 1] = i; if (i < N - 1) { J[start + 2] = i + 1; } val[start] = val[start - 1]; val[start + 1] = static_cast(rand()) / RAND_MAX + 10.0f; if (i < N - 1) { val[start + 2] = static_cast(rand()) / RAND_MAX; } } I[N] = nz; } // I - contains location of the given non-zero element in the row of the matrix // J - contains location of the given non-zero element in the column of the // matrix val - contains values of the given non-zero elements of the matrix // inputVecX - input vector to be multiplied // outputVecY - resultant vector void cpuSpMV(int *I, int *J, float *val, int nnz, int num_rows, float alpha, float *inputVecX, float *outputVecY) { for (int i = 0; i < num_rows; i++) { int num_elems_this_row = I[i + 1] - I[i]; float output = 0.0; for (int j = 0; j < num_elems_this_row; j++) { output += alpha * val[I[i] + j] * inputVecX[J[I[i] + j]]; } outputVecY[i] = output; } return; } double dotProduct(float *vecA, float *vecB, int size) { double result = 0.0; for (int i = 0; i < size; i++) { result = result + (vecA[i] * vecB[i]); } return result; } void scaleVector(float *vec, float alpha, int size) { for (int i = 0; i < size; i++) { vec[i] = alpha * vec[i]; } } void saxpy(float *x, float *y, float a, int size) { for (int i = 0; i < size; i++) { y[i] = a * x[i] + y[i]; } } void cpuConjugateGrad(int *I, int *J, float *val, float *x, float *Ax, float *p, float *r, int nnz, int N, float tol) { int max_iter = 10000; float alpha = 1.0; float alpham1 = -1.0; float r0 = 0.0, b, a, na; cpuSpMV(I, J, val, nnz, N, alpha, x, Ax); saxpy(Ax, r, alpham1, N); float r1 = dotProduct(r, r, N); int k = 1; while (r1 > tol * tol && k <= max_iter) { if (k > 1) { b = r1 / r0; scaleVector(p, b, N); saxpy(r, p, alpha, N); } else { for (int i = 0; i < N; i++) p[i] = r[i]; } cpuSpMV(I, J, val, nnz, N, alpha, p, Ax); float dot = dotProduct(p, Ax, N); a = r1 / dot; saxpy(p, x, a, N); na = -a; saxpy(Ax, r, na, N); r0 = r1; r1 = dotProduct(r, r, N); printf("\nCPU code iteration = %3d, residual = %e\n", k, sqrt(r1)); k++; } } __device__ void gpuSpMV(int *I, int *J, float *val, int nnz, int num_rows, float alpha, float *inputVecX, float *outputVecY, cg::thread_block &cta, const cg::multi_grid_group &multi_grid) { for (int i = multi_grid.thread_rank(); i < num_rows; i += multi_grid.size()) { int row_elem = I[i]; int next_row_elem = I[i + 1]; int num_elems_this_row = next_row_elem - row_elem; float output = 0.0; for (int j = 0; j < num_elems_this_row; j++) { output += alpha * val[row_elem + j] * inputVecX[J[row_elem + j]]; } outputVecY[i] = output; } } __device__ void gpuSaxpy(float *x, float *y, float a, int size, const cg::multi_grid_group &multi_grid) { for (int i = multi_grid.thread_rank(); i < size; i += multi_grid.size()) { y[i] = a * x[i] + y[i]; } } __device__ void gpuDotProduct(float *vecA, float *vecB, int size, const cg::thread_block &cta, const cg::multi_grid_group &multi_grid) { __shared__ double tmp[THREADS_PER_BLOCK]; double temp_sum = 0.0; for (int i = multi_grid.thread_rank(); i < size; i += multi_grid.size()) { temp_sum += static_cast(vecA[i] * vecB[i]); } tmp[cta.thread_rank()] = temp_sum; cg::sync(cta); cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta); double beta = temp_sum; double temp; for (int i = tile32.size() / 2; i > 0; i >>= 1) { if (tile32.thread_rank() < i) { temp = tmp[cta.thread_rank() + i]; beta += temp; tmp[cta.thread_rank()] = beta; } cg::sync(tile32); } cg::sync(cta); if (cta.thread_rank() == 0) { beta = 0.0; for (int i = 0; i < cta.size(); i += tile32.size()) { beta += tmp[i]; } atomicAdd(&grid_dot_result, beta); } } __device__ void gpuCopyVector(float *srcA, float *destB, int size, const cg::multi_grid_group &multi_grid) { for (int i = multi_grid.thread_rank(); i < size; i += multi_grid.size()) { destB[i] = srcA[i]; } } __device__ void gpuScaleVector(float *vec, float alpha, int size, const cg::multi_grid_group &multi_grid) { for (int i = multi_grid.thread_rank(); i < size; i += multi_grid.size()) { vec[i] = alpha * vec[i]; } } __device__ void setDotResultToZero(double *dot_result) { unsigned long long int *address_as_ull = (unsigned long long int *)dot_result; unsigned long long int old = *address_as_ull, assumed; do { assumed = old; old = atomicCAS_system(address_as_ull, assumed, 0); } while (assumed != old); } extern "C" __global__ void multiGpuConjugateGradient( int *I, int *J, float *val, float *x, float *Ax, float *p, float *r, double *dot_result, int nnz, int N, float tol) { cg::thread_block cta = cg::this_thread_block(); cg::grid_group grid = cg::this_grid(); cg::multi_grid_group multi_grid = cg::this_multi_grid(); const int max_iter = 10000; float alpha = 1.0; float alpham1 = -1.0; float r0 = 0.0, r1, b, a, na; for (int i = multi_grid.thread_rank(); i < N; i += multi_grid.size()) { r[i] = 1.0; x[i] = 0.0; } cg::sync(grid); gpuSpMV(I, J, val, nnz, N, alpha, x, Ax, cta, multi_grid); cg::sync(grid); gpuSaxpy(Ax, r, alpham1, N, multi_grid); cg::sync(grid); gpuDotProduct(r, r, N, cta, multi_grid); cg::sync(grid); if (grid.thread_rank() == 0) { atomicAdd_system(dot_result, grid_dot_result); grid_dot_result = 0.0; } cg::sync(multi_grid); r1 = *dot_result; int k = 1; while (r1 > tol * tol && k <= max_iter) { if (k > 1) { b = r1 / r0; gpuScaleVector(p, b, N, multi_grid); cg::sync(grid); gpuSaxpy(r, p, alpha, N, multi_grid); } else { gpuCopyVector(r, p, N, multi_grid); } cg::sync(multi_grid); gpuSpMV(I, J, val, nnz, N, alpha, p, Ax, cta, multi_grid); if (multi_grid.thread_rank() == 0) { setDotResultToZero(dot_result); } cg::sync(multi_grid); gpuDotProduct(p, Ax, N, cta, multi_grid); cg::sync(grid); if (grid.thread_rank() == 0) { atomicAdd_system(dot_result, grid_dot_result); grid_dot_result = 0.0; } cg::sync(multi_grid); a = r1 / *dot_result; gpuSaxpy(p, x, a, N, multi_grid); na = -a; gpuSaxpy(Ax, r, na, N, multi_grid); r0 = r1; cg::sync(multi_grid); if (multi_grid.thread_rank() == 0) { setDotResultToZero(dot_result); } cg::sync(multi_grid); gpuDotProduct(r, r, N, cta, multi_grid); cg::sync(grid); if (grid.thread_rank() == 0) { atomicAdd_system(dot_result, grid_dot_result); grid_dot_result = 0.0; } cg::sync(multi_grid); r1 = *dot_result; k++; } } void getIdenticalGPUs(int num_of_gpus, std::set &identicalGPUs) { int *major_minor = reinterpret_cast(malloc(sizeof(int) * num_of_gpus * 2)); int foundIdenticalGPUs = 0; for (int i = 0; i < num_of_gpus; i++) { cudaDeviceProp deviceProp; checkCudaErrors(cudaGetDeviceProperties(&deviceProp, i)); major_minor[i * 2] = deviceProp.major; major_minor[i * 2 + 1] = deviceProp.minor; printf("GPU Device %d: \"%s\" with compute capability %d.%d\n", i, deviceProp.name, deviceProp.major, deviceProp.minor); } int maxMajorMinor[2] = {0, 0}; for (int i = 0; i < num_of_gpus; i++) { for (int j = i + 1; j < num_of_gpus; j++) { if ((major_minor[i * 2] == major_minor[j * 2]) && (major_minor[i * 2 + 1] == major_minor[j * 2 + 1])) { identicalGPUs.insert(i); identicalGPUs.insert(j); foundIdenticalGPUs = 1; if (maxMajorMinor[0] < major_minor[i * 2] && maxMajorMinor[1] < major_minor[i * 2 + 1]) { maxMajorMinor[0] = major_minor[i * 2]; maxMajorMinor[1] = major_minor[i * 2 + 1]; } } } } free(major_minor); if (!foundIdenticalGPUs) { printf( "No Two or more GPUs with same architecture found\nWaiving the " "sample\n"); exit(EXIT_WAIVED); } std::set::iterator it = identicalGPUs.begin(); // Iterate over all the identical GPUs found while (it != identicalGPUs.end()) { cudaDeviceProp deviceProp; checkCudaErrors(cudaGetDeviceProperties(&deviceProp, *it)); // Remove all the GPUs which are less than the best arch available if (deviceProp.major != maxMajorMinor[0] && deviceProp.minor != maxMajorMinor[1]) { identicalGPUs.erase(it); } if (!deviceProp.cooperativeMultiDeviceLaunch || !deviceProp.concurrentManagedAccess) { identicalGPUs.erase(it); } it++; } return; } int main(int argc, char **argv) { int N = 0, nz = 0, *I = NULL, *J = NULL; float *val = NULL; const float tol = 1e-5f; float *x; float rhs = 1.0; float r1; float *r, *p, *Ax; printf("Starting [%s]...\n", sSDKname); int num_of_gpus = 0; checkCudaErrors(cudaGetDeviceCount(&num_of_gpus)); if (num_of_gpus <= 1) { printf("No. of GPU on node %d\n", num_of_gpus); printf("Minimum Two or more GPUs are required to run this sample code\n"); exit(EXIT_WAIVED); } std::set identicalGPUs; getIdenticalGPUs(num_of_gpus, identicalGPUs); if (identicalGPUs.size() <= 1) { printf( "No Two or more GPUs with same architecture capable of " "cooperativeMultiDeviceLaunch & concurrentManagedAccess found. " "\nWaiving the sample\n"); exit(EXIT_WAIVED); } std::set::iterator deviceId = identicalGPUs.begin(); // We use only 2 GPUs as for input size of N = 10485760*2 two GPUs are enough. while (identicalGPUs.size() > 2) { identicalGPUs.erase(deviceId); deviceId++; } /* Generate a random tridiagonal symmetric matrix in CSR format */ N = 10485760 * 2; nz = (N - 2) * 3 + 4; checkCudaErrors( cudaMallocManaged(reinterpret_cast(&I), sizeof(int) * (N + 1))); checkCudaErrors( cudaMallocManaged(reinterpret_cast(&J), sizeof(int) * nz)); checkCudaErrors( cudaMallocManaged(reinterpret_cast(&val), sizeof(float) * nz)); float *val_cpu = reinterpret_cast(malloc(sizeof(float) * nz)); genTridiag(I, J, val_cpu, N, nz); memcpy(val, val_cpu, sizeof(float) * nz); checkCudaErrors( cudaMemAdvise(I, sizeof(int) * (N + 1), cudaMemAdviseSetReadMostly, 0)); checkCudaErrors( cudaMemAdvise(J, sizeof(int) * nz, cudaMemAdviseSetReadMostly, 0)); checkCudaErrors( cudaMemAdvise(val, sizeof(float) * nz, cudaMemAdviseSetReadMostly, 0)); checkCudaErrors( cudaMallocManaged(reinterpret_cast(&x), sizeof(float) * N)); double *dot_result; checkCudaErrors(cudaMallocManaged(reinterpret_cast(&dot_result), sizeof(double))); checkCudaErrors(cudaMemset(dot_result, 0.0, sizeof(double))); // temp memory for ConjugateGradient checkCudaErrors( cudaMallocManaged(reinterpret_cast(&r), N * sizeof(float))); checkCudaErrors( cudaMallocManaged(reinterpret_cast(&p), N * sizeof(float))); checkCudaErrors( cudaMallocManaged(reinterpret_cast(&Ax), N * sizeof(float))); std::cout << "\nRunning on GPUs = " << identicalGPUs.size() << std::endl; cudaStream_t *nStreams = reinterpret_cast( malloc(sizeof(cudaStream_t) * identicalGPUs.size())); void *kernelArgs[] = { (void *)&I, (void *)&J, (void *)&val, (void *)&x, (void *)&Ax, (void *)&p, (void *)&r, (void *)&dot_result, (void *)&nz, (void *)&N, (void *)&tol, }; int sMemSize = sizeof(double) * THREADS_PER_BLOCK; int numBlocksPerSm = 0; int numThreads = THREADS_PER_BLOCK; deviceId = identicalGPUs.begin(); cudaDeviceProp deviceProp; checkCudaErrors(cudaSetDevice(*deviceId)); checkCudaErrors(cudaGetDeviceProperties(&deviceProp, *deviceId)); checkCudaErrors(cudaOccupancyMaxActiveBlocksPerMultiprocessor( &numBlocksPerSm, multiGpuConjugateGradient, numThreads, sMemSize)); int numSms = deviceProp.multiProcessorCount; dim3 dimGrid(numSms * numBlocksPerSm, 1, 1), dimBlock(THREADS_PER_BLOCK, 1, 1); int device_count = 0; int totalThreadsPerGPU = numSms * numBlocksPerSm * THREADS_PER_BLOCK; while (deviceId != identicalGPUs.end()) { cudaDeviceProp deviceProp; checkCudaErrors(cudaSetDevice(*deviceId)); checkCudaErrors(cudaGetDeviceProperties(&deviceProp, *deviceId)); checkCudaErrors(cudaStreamCreate(&nStreams[device_count])); if (deviceProp.concurrentManagedAccess) { int perGPUIter = N / (totalThreadsPerGPU * identicalGPUs.size()); int offset_Ax = device_count * totalThreadsPerGPU; int offset_r = device_count * totalThreadsPerGPU; int offset_p = device_count * totalThreadsPerGPU; int offset_x = device_count * totalThreadsPerGPU; checkCudaErrors(cudaMemPrefetchAsync(I, sizeof(int) * N, *deviceId, nStreams[device_count])); checkCudaErrors(cudaMemPrefetchAsync(val, sizeof(float) * nz, *deviceId, nStreams[device_count])); checkCudaErrors(cudaMemPrefetchAsync(J, sizeof(float) * nz, *deviceId, nStreams[device_count])); if (offset_Ax <= N) { for (int i = 0; i < perGPUIter; i++) { cudaMemAdvise(Ax + offset_Ax, sizeof(float) * totalThreadsPerGPU, cudaMemAdviseSetPreferredLocation, *deviceId); cudaMemAdvise(r + offset_r, sizeof(float) * totalThreadsPerGPU, cudaMemAdviseSetPreferredLocation, *deviceId); cudaMemAdvise(x + offset_x, sizeof(float) * totalThreadsPerGPU, cudaMemAdviseSetPreferredLocation, *deviceId); cudaMemAdvise(p + offset_p, sizeof(float) * totalThreadsPerGPU, cudaMemAdviseSetPreferredLocation, *deviceId); cudaMemAdvise(Ax + offset_Ax, sizeof(float) * totalThreadsPerGPU, cudaMemAdviseSetAccessedBy, *deviceId); cudaMemAdvise(r + offset_r, sizeof(float) * totalThreadsPerGPU, cudaMemAdviseSetAccessedBy, *deviceId); cudaMemAdvise(p + offset_p, sizeof(float) * totalThreadsPerGPU, cudaMemAdviseSetAccessedBy, *deviceId); cudaMemAdvise(x + offset_x, sizeof(float) * totalThreadsPerGPU, cudaMemAdviseSetAccessedBy, *deviceId); offset_Ax += totalThreadsPerGPU * identicalGPUs.size(); offset_r += totalThreadsPerGPU * identicalGPUs.size(); offset_p += totalThreadsPerGPU * identicalGPUs.size(); offset_x += totalThreadsPerGPU * identicalGPUs.size(); if (offset_Ax >= N) { break; } } } } device_count++; deviceId++; } #if ENABLE_CPU_DEBUG_CODE float *Ax_cpu = reinterpret_cast(malloc(sizeof(float) * N)); float *r_cpu = reinterpret_cast(malloc(sizeof(float) * N)); float *p_cpu = reinterpret_cast(malloc(sizeof(float) * N)); float *x_cpu = reinterpret_cast(malloc(sizeof(float) * N)); for (int i = 0; i < N; i++) { r_cpu[i] = 1.0; Ax_cpu[i] = x_cpu[i] = 0.0; } #endif printf("Total threads per GPU = %d numBlocksPerSm = %d\n", numSms * numBlocksPerSm * THREADS_PER_BLOCK, numBlocksPerSm); cudaLaunchParams *launchParamsList = reinterpret_cast( malloc(sizeof(cudaLaunchParams) * identicalGPUs.size())); for (int i = 0; i < identicalGPUs.size(); i++) { launchParamsList[i].func = reinterpret_cast(multiGpuConjugateGradient); launchParamsList[i].gridDim = dimGrid; launchParamsList[i].blockDim = dimBlock; launchParamsList[i].sharedMem = sMemSize; launchParamsList[i].stream = nStreams[i]; launchParamsList[i].args = kernelArgs; } printf("Launching kernel\n"); checkCudaErrors(cudaLaunchCooperativeKernelMultiDevice( launchParamsList, identicalGPUs.size(), cudaCooperativeLaunchMultiDeviceNoPreSync | cudaCooperativeLaunchMultiDeviceNoPostSync)); if (deviceProp.concurrentManagedAccess) { checkCudaErrors( cudaMemPrefetchAsync(x, sizeof(float) * N, cudaCpuDeviceId)); checkCudaErrors( cudaMemPrefetchAsync(dot_result, sizeof(double), cudaCpuDeviceId)); } deviceId = identicalGPUs.begin(); device_count = 0; while (deviceId != identicalGPUs.end()) { checkCudaErrors(cudaSetDevice(*deviceId)); checkCudaErrors(cudaStreamSynchronize(nStreams[device_count++])); deviceId++; } r1 = *dot_result; printf("GPU Final, residual = %e \n ", sqrt(r1)); #if ENABLE_CPU_DEBUG_CODE cpuConjugateGrad(I, J, val, x_cpu, Ax_cpu, p_cpu, r_cpu, nz, N, tol); #endif float rsum, diff, err = 0.0; for (int i = 0; i < N; i++) { rsum = 0.0; for (int j = I[i]; j < I[i + 1]; j++) { rsum += val_cpu[j] * x[J[j]]; } diff = fabs(rsum - rhs); if (diff > err) { err = diff; } } checkCudaErrors(cudaFree(I)); checkCudaErrors(cudaFree(J)); checkCudaErrors(cudaFree(val)); checkCudaErrors(cudaFree(x)); checkCudaErrors(cudaFree(r)); checkCudaErrors(cudaFree(p)); checkCudaErrors(cudaFree(Ax)); checkCudaErrors(cudaFree(dot_result)); free(val_cpu); #if ENABLE_CPU_DEBUG_CODE free(Ax_cpu); free(r_cpu); free(p_cpu); free(x_cpu); #endif printf("Test Summary: Error amount = %f \n", err); fprintf(stdout, "&&&& conjugateGradientMultiDeviceCG %s\n", (sqrt(r1) < tol) ? "PASSED" : "FAILED"); exit((sqrt(r1) < tol) ? EXIT_SUCCESS : EXIT_FAILURE); }