/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef FWT_KERNEL_CUH #define FWT_KERNEL_CUH #ifndef fwt_kernel_cuh #define fwt_kernel_cuh #include namespace cg = cooperative_groups; /////////////////////////////////////////////////////////////////////////////// // Elementary(for vectors less than elementary size) in-shared memory // combined radix-2 + radix-4 Fast Walsh Transform /////////////////////////////////////////////////////////////////////////////// #define ELEMENTARY_LOG2SIZE 11 __global__ void fwtBatch1Kernel(float *d_Output, float *d_Input, int log2N) { // Handle to thread block group cg::thread_block cta = cg::this_thread_block(); const int N = 1 << log2N; const int base = blockIdx.x << log2N; //(2 ** 11) * 4 bytes == 8KB -- maximum s_data[] size for G80 extern __shared__ float s_data[]; float *d_Src = d_Input + base; float *d_Dst = d_Output + base; for (int pos = threadIdx.x; pos < N; pos += blockDim.x) { s_data[pos] = d_Src[pos]; } // Main radix-4 stages const int pos = threadIdx.x; for (int stride = N >> 2; stride > 0; stride >>= 2) { int lo = pos & (stride - 1); int i0 = ((pos - lo) << 2) + lo; int i1 = i0 + stride; int i2 = i1 + stride; int i3 = i2 + stride; cg::sync(cta); float D0 = s_data[i0]; float D1 = s_data[i1]; float D2 = s_data[i2]; float D3 = s_data[i3]; float T; T = D0; D0 = D0 + D2; D2 = T - D2; T = D1; D1 = D1 + D3; D3 = T - D3; T = D0; s_data[i0] = D0 + D1; s_data[i1] = T - D1; T = D2; s_data[i2] = D2 + D3; s_data[i3] = T - D3; } // Do single radix-2 stage for odd power of two if (log2N & 1) { cg::sync(cta); for (int pos = threadIdx.x; pos < N / 2; pos += blockDim.x) { int i0 = pos << 1; int i1 = i0 + 1; float D0 = s_data[i0]; float D1 = s_data[i1]; s_data[i0] = D0 + D1; s_data[i1] = D0 - D1; } } cg::sync(cta); for (int pos = threadIdx.x; pos < N; pos += blockDim.x) { d_Dst[pos] = s_data[pos]; } } //////////////////////////////////////////////////////////////////////////////// // Single in-global memory radix-4 Fast Walsh Transform pass // (for strides exceeding elementary vector size) //////////////////////////////////////////////////////////////////////////////// __global__ void fwtBatch2Kernel(float *d_Output, float *d_Input, int stride) { const int pos = blockIdx.x * blockDim.x + threadIdx.x; const int N = blockDim.x * gridDim.x * 4; float *d_Src = d_Input + blockIdx.y * N; float *d_Dst = d_Output + blockIdx.y * N; int lo = pos & (stride - 1); int i0 = ((pos - lo) << 2) + lo; int i1 = i0 + stride; int i2 = i1 + stride; int i3 = i2 + stride; float D0 = d_Src[i0]; float D1 = d_Src[i1]; float D2 = d_Src[i2]; float D3 = d_Src[i3]; float T; T = D0; D0 = D0 + D2; D2 = T - D2; T = D1; D1 = D1 + D3; D3 = T - D3; T = D0; d_Dst[i0] = D0 + D1; d_Dst[i1] = T - D1; T = D2; d_Dst[i2] = D2 + D3; d_Dst[i3] = T - D3; } //////////////////////////////////////////////////////////////////////////////// // Put everything together: batched Fast Walsh Transform CPU front-end //////////////////////////////////////////////////////////////////////////////// void fwtBatchGPU(float *d_Data, int M, int log2N) { const int THREAD_N = 256; int N = 1 << log2N; dim3 grid((1 << log2N) / (4 * THREAD_N), M, 1); for (; log2N > ELEMENTARY_LOG2SIZE; log2N -= 2, N >>= 2, M <<= 2) { fwtBatch2Kernel<<>>(d_Data, d_Data, N / 4); getLastCudaError("fwtBatch2Kernel() execution failed\n"); } fwtBatch1Kernel<<>>(d_Data, d_Data, log2N); getLastCudaError("fwtBatch1Kernel() execution failed\n"); } //////////////////////////////////////////////////////////////////////////////// // Modulate two arrays //////////////////////////////////////////////////////////////////////////////// __global__ void modulateKernel(float *d_A, float *d_B, int N) { int tid = blockIdx.x * blockDim.x + threadIdx.x; int numThreads = blockDim.x * gridDim.x; float rcpN = 1.0f / (float)N; for (int pos = tid; pos < N; pos += numThreads) { d_A[pos] *= d_B[pos] * rcpN; } } // Interface to modulateKernel() void modulateGPU(float *d_A, float *d_B, int N) { modulateKernel<<<128, 256>>>(d_A, d_B, N); } #endif #endif