/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // System includes. #include #include // STL. #include // CUDA runtime. #include // Helper functions and utilities to work with CUDA. #include #include // Device library includes. #include "simpleDeviceLibrary.cuh" using std::cout; using std::endl; using std::vector; #define EPS 1e-5 typedef unsigned int uint; typedef float (*deviceFunc)(float); const char *sampleName = "simpleSeparateCompilation"; //////////////////////////////////////////////////////////////////////////////// // Auto-Verification Code bool testResult = true; //////////////////////////////////////////////////////////////////////////////// // Static device pointers to __device__ functions. __device__ deviceFunc dMultiplyByTwoPtr = multiplyByTwo; __device__ deviceFunc dDivideByTwoPtr = divideByTwo; //////////////////////////////////////////////////////////////////////////////// // Kernels //////////////////////////////////////////////////////////////////////////////// //! Transforms vector. //! Applies the __device__ function "f" to each element of the vector "v". //////////////////////////////////////////////////////////////////////////////// __global__ void transformVector(float *v, deviceFunc f, uint size) { uint tid = blockIdx.x * blockDim.x + threadIdx.x; if (tid < size) { v[tid] = (*f)(v[tid]); } } //////////////////////////////////////////////////////////////////////////////// // Declaration, forward void runTest(int argc, const char **argv); //////////////////////////////////////////////////////////////////////////////// // Program main //////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { cout << sampleName << " starting..." << endl; runTest(argc, (const char **)argv); cout << sampleName << " completed, returned " << (testResult ? "OK" : "ERROR") << endl; exit(testResult ? EXIT_SUCCESS : EXIT_FAILURE); } void runTest(int argc, const char **argv) { try { // This will pick the best possible CUDA capable device. findCudaDevice(argc, (const char **)argv); // Create host vector. const uint kVectorSize = 1000; vector hVector(kVectorSize); for (uint i = 0; i < kVectorSize; ++i) { hVector[i] = rand() / static_cast(RAND_MAX); } // Create and populate device vector. float *dVector; checkCudaErrors(cudaMalloc(&dVector, kVectorSize * sizeof(float))); checkCudaErrors(cudaMemcpy(dVector, &hVector[0], kVectorSize * sizeof(float), cudaMemcpyHostToDevice)); // Kernel configuration, where a one-dimensional // grid and one-dimensional blocks are configured. const int nThreads = 1024; const int nBlocks = 1; dim3 dimGrid(nBlocks); dim3 dimBlock(nThreads); // Test library functions. deviceFunc hFunctionPtr; cudaMemcpyFromSymbol(&hFunctionPtr, dMultiplyByTwoPtr, sizeof(deviceFunc)); transformVector<<>>(dVector, hFunctionPtr, kVectorSize); checkCudaErrors(cudaGetLastError()); cudaMemcpyFromSymbol(&hFunctionPtr, dDivideByTwoPtr, sizeof(deviceFunc)); transformVector<<>>(dVector, hFunctionPtr, kVectorSize); checkCudaErrors(cudaGetLastError()); // Download results. vector hResultVector(kVectorSize); checkCudaErrors(cudaMemcpy(&hResultVector[0], dVector, kVectorSize * sizeof(float), cudaMemcpyDeviceToHost)); // Check results. for (int i = 0; i < kVectorSize; ++i) { if (fabs(hVector[i] - hResultVector[i]) > EPS) { cout << "Computations were incorrect..." << endl; testResult = false; break; } } // Free resources. if (dVector) checkCudaErrors(cudaFree(dVector)); } catch (...) { cout << "Error occured, exiting..." << endl; exit(EXIT_FAILURE); } }