/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #define STRINGIFY(A) #A // vertex shader const char *vertexShader = STRINGIFY( uniform float pointRadius; // point size in world space uniform float pointScale; // scale to calculate size in pixels uniform float densityScale; uniform float densityOffset; void main() { // calculate window-space point size vec3 posEye = vec3(gl_ModelViewMatrix * vec4(gl_Vertex.xyz, 1.0)); float dist = length(posEye); gl_PointSize = pointRadius * (pointScale / dist); gl_TexCoord[0] = gl_MultiTexCoord0; gl_Position = gl_ModelViewProjectionMatrix * vec4(gl_Vertex.xyz, 1.0); gl_FrontColor = gl_Color; }); // pixel shader for rendering points as shaded spheres const char *spherePixelShader = STRINGIFY( void main() { const vec3 lightDir = vec3(0.577, 0.577, 0.577); // calculate normal from texture coordinates vec3 N; N.xy = gl_TexCoord[0].xy*vec2(2.0, -2.0) + vec2(-1.0, 1.0); float mag = dot(N.xy, N.xy); if (mag > 1.0) discard; // kill pixels outside circle N.z = sqrt(1.0-mag); // calculate lighting float diffuse = max(0.0, dot(lightDir, N)); gl_FragColor = gl_Color * diffuse; });