/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // CUDA sample demonstrating a integer GEMM computation using the Warp Matrix // Multiply and Accumulate API. // In this program, the compute_gemm kernel computes the result of a matrix // multiplication and addition: D = alpha * A * B + beta * C. The dimensions of // both C and D matrices are M_GLOBAL x N_GLOBAL. The A matrix is M_GLOBAL x // K_GLOBAL (row-major), the B matrix is K_GLOBAL x N_GLOBAL (column-major). In // that kernel, each CTA computes one 128 x 128 tile of the resulting matrix per // iteration. When the tile is computed, the CTA stores it to the global memory // and begins a new iteration, selecting a new 128 x 128 tile to compute. // Each CTA consists of eight warps. For the 128 x 128 tile, each warp computes // eight 16 x 16 subtiles, organized in a 2 x 4 two-dimensional array. Warps // compute the 16 x 16 subtiles using nvcuda::wmma::mma_sync operations by // moving through the K_GLOBAL dimension of the A and B matrices and // accumulating the intermediate result in the local thread state. // There are a number of simple optimizations used in the algorithm: // - The CTA copies the 128 x 128 tile of the C matrix from the global memory to // shared memory. After that is done, each warp loads the C matrix fragments // from shared memory, thus avoiding a random global memory access. // - On each internal iteration, the CTA copies a portion of the A and B // matrices from // global memory to shared memory. After that, all warps in the CTA reuse the // A and B data from shared memory, thus reducing the number of data copies // from global memory. // - The portions of the A and B matrices are stored in shared memory with an // additional // padding (skew) to reduce the number of shared memory access bank conflicts. // (See a detailed explanation near the SKEW_HALF macro definition.) // - When the CTA finishes computing the tiles of the resulting matrix, each // warp stores // its subtiles to shared memory. The CTA then copies the shared memory // contents to global memory, again avoiding redundant random global memory // accesses. // - Note that the CTA tile size is chosen to maximize the GPU register // utilization, // but carefully enough to avoid local memory use. #include #include #include #include // helper functions and utilities to work with CUDA #include #include // Externally configurable parameters. #ifndef CPU_DEBUG // Set this to 1 to verify the correctness of the GPU-computed matrix. #define CPU_DEBUG 0 #endif #ifndef SHARED_MEMORY_LIMIT_64K // Set this to 0 to use more than 64 Kb of shared memory to cache data, to // improve the performance of the computations on GPU. // Note that you need a GPU that can have more than 64 Kb of shared memory // per multiprocessor. #define SHARED_MEMORY_LIMIT_64K 1 #endif // GPU configuration. #define WARP_SIZE 32 // MMA matrix tile dimensions. #define M 16 #define N 16 #define K 16 #define WMMA_M 16 #define WMMA_N 16 #define WMMA_K 16 // GEMM configuration. #define M_TILES 256 #define N_TILES 256 #define K_TILES 256 #define M_GLOBAL (M * M_TILES) #define N_GLOBAL (N * N_TILES) #define K_GLOBAL (K * K_TILES) #define C_LAYOUT wmma::mem_row_major // Implementation constants. #define WARPS_PER_BLOCK 8 #define THREADS_PER_BLOCK (WARP_SIZE * WARPS_PER_BLOCK) #if SHARED_MEMORY_LIMIT_64K // With only 64 Kb shared memory available, we can fit two 8-tile chunks of // the A and B matrix data, that are 16 * 16 * 8 * 8 * 2 = 32 Kb each // (i.e. two 8x8 arrays of tiles of 16x16 uint8_t-typed elements per CTA). // But we cannot account the 8 Kb total skew overhead, without which the // performance would be severely impacted. So we choose to reduce the chunk size // in half, i.e. the amount of A and B matrix data we cache in shared memory. // Accordingly, this doubles the number of outer iterations across the global K // dimension, which only slightly impacts the performance. #define CHUNK_K 8 #else #define CHUNK_K 16 #endif #define CHUNK_LINE_BYTES (CHUNK_K * K * sizeof(uint8_t)) #define WARP_COPY_BYTES (WARP_SIZE * sizeof(int4)) #define CHUNK_COPY_LINES_PER_WARP (WARP_COPY_BYTES / CHUNK_LINE_BYTES) #define CHUNK_COPY_LINE_LANES (WARP_SIZE / CHUNK_COPY_LINES_PER_WARP) #define BLOCK_ROW_WARPS 2 #define BLOCK_COL_WARPS 4 #define WARP_ROW_TILES 4 #define WARP_COL_TILES 2 #define BLOCK_ROW_TILES (WARP_ROW_TILES * BLOCK_ROW_WARPS) #define BLOCK_COL_TILES (WARP_COL_TILES * BLOCK_COL_WARPS) #define GLOBAL_MEM_STRIDE N_GLOBAL #define SHMEM_STRIDE (N * BLOCK_ROW_TILES) #define SHMEM_OFFSET (N * WARP_ROW_TILES) // The macro below is used to shift rows of the A matrix and columns of the B // matrix in shared memory to minimize possible bank conflicts. Before // performing the nvcuda::wmma::mma_sync operation, the warp must load the // matrix data using the nvcuda::wmma::load_matrix_sync operation. Although the // memory access pattern is not specified for that function, each lane in the // warp can read one or multiple matrix elements from different matrix rows or // columns. For shared memory, such access can result in bank conflicts if // different rows / columns of the matrix map to the same bank. By shifting each // row and column by a few bytes, we make sure that they map to different banks, // thus reducing the number of possible bank conflicts. The number of 32 // one-byte "uint8_t" elements is chosen as the minimum possible shift because // we must keep each row and column 256-bit aligned, as required by // nvcuda::wmma::load_matrix_sync. #define SKEW_UINT8 32 #define checkKernelErrors(expr) \ do { \ expr; \ \ cudaError_t __err = cudaGetLastError(); \ if (__err != cudaSuccess) { \ printf("Line %d: '%s' failed: %s\n", __LINE__, #expr, \ cudaGetErrorString(__err)); \ abort(); \ } \ } while (0) using namespace nvcuda; __host__ void init_host_matrices(uint8_t *a, uint8_t *b, int *c) { for (int i = 0; i < M_GLOBAL; i++) { for (int j = 0; j < K_GLOBAL; j++) { a[i * K_GLOBAL + j] = (uint8_t)(rand() % 3); } } for (int i = 0; i < N_GLOBAL; i++) { for (int j = 0; j < K_GLOBAL; j++) { b[i * K_GLOBAL + j] = (uint8_t)(rand() % 3); } } for (int t = 0; t < M_GLOBAL * N_GLOBAL; t++) { c[t] = (rand() % 3); } } __global__ void compute_gemm_imma(const uint8_t *A, const uint8_t *B, const int *C, int *D, int alpha, int beta) { extern __shared__ uint8_t shmem[][CHUNK_K * K + SKEW_UINT8]; // Warp and lane identification. const unsigned int warpId = threadIdx.x / WARP_SIZE; const unsigned int laneId = threadIdx.x % WARP_SIZE; // Offset in shared memory from which the B matrix is stored. const size_t shmem_idx_b_off = BLOCK_COL_TILES * M; // This pointer is used to access the C and D matrix tiles this warp computes. int *shmem_warp_tile_ptr = (int *)&shmem[0][0] + (warpId / 2) * SHMEM_STRIDE * K * 2 + (warpId % 2) * SHMEM_OFFSET; // This pointer is used to stream the C and D matrices block-wide tile to and // from shared memory. int *shmem_warp_stream_ptr = (int *)&shmem[0][0] + warpId * SHMEM_STRIDE * K; // Adjust the beta scaler, as it'll be multiplied by alpha at the end of // each tile computation. Technically this is not generally correct (may // result in a loss of precision). Zero still needs to be specially handled // though. beta /= alpha; // Each CTA slides along the 128 x 128 tiles from the top left corner of the // matrix to the right and down, and selects the next tile to compute. Once // there's no such tile, all warps in this CTA exit. for (unsigned int block_pos = blockIdx.x;; block_pos += gridDim.x) { const unsigned int block_tile_i = ((block_pos * BLOCK_ROW_TILES) / N_TILES) * (BLOCK_COL_TILES); const unsigned int block_tile_j = (block_pos * BLOCK_COL_TILES) % N_TILES; // Stop when there are no more D matrix tiles to compute in this CTA. if (block_tile_i >= M_TILES) { break; } // This warp's pointer to the C matrix data to copy memory from to shared // memory. const size_t gmem_idx = (block_tile_i + warpId) * M * GLOBAL_MEM_STRIDE + block_tile_j * N; const int *src_gmem_warp_stream_ptr = &C[gmem_idx]; // Stream multiple C tiles to shared memory. #pragma unroll for (int i = 0; i < K; i++) { typedef int4 copy_t; *((copy_t *)(shmem_warp_stream_ptr + SHMEM_STRIDE * i) + laneId) = *((copy_t *)(src_gmem_warp_stream_ptr + GLOBAL_MEM_STRIDE * i) + laneId); } __syncthreads(); // These fragments will accumulate the result of A and B matrix fragment // multiplications along the K_GLOBAL dimension. wmma::fragment c[WARP_COL_TILES] [WARP_ROW_TILES]; // Load the C matrix tiles into fragments from shared memory. #pragma unroll for (int i = 0; i < WARP_COL_TILES; i++) { #pragma unroll for (int j = 0; j < WARP_ROW_TILES; j++) { const int *tile_ptr = shmem_warp_tile_ptr + i * SHMEM_STRIDE * K + j * N; wmma::load_matrix_sync(c[i][j], tile_ptr, SHMEM_STRIDE, C_LAYOUT); } } __syncthreads(); // Scale the C matrix. #pragma unroll for (int i = 0; i < WARP_COL_TILES; i++) { #pragma unroll for (int j = 0; j < WARP_ROW_TILES; j++) { #pragma unroll for (int t = 0; t < c[i][j].num_elements; t++) { c[i][j].x[t] *= beta; } } } // Select what warp copies what matrix to shared memory. // Warps 0-3 copy the A matrix, warps 4-7 copy the B matrix. const uint8_t *warp_ptr = (warpId < 4) ? (&A[block_tile_i * M * K_GLOBAL] + M * K_GLOBAL * (warpId % 4) * 2) : (&B[block_tile_j * N * K_GLOBAL] + N * K_GLOBAL * (warpId % 4) * 2); // Go through the global K dimension by a fixed step at a time. #pragma unroll for (int tile_k = 0; tile_k < K_TILES; tile_k += CHUNK_K) { // Copy slices of the A and B matrices to shared memory. // The first half of the warps in the CTA copy the A matrix, the rest copy // the B matrix. size_t shmem_idx = warpId < (WARPS_PER_BLOCK / 2) ? (M * (warpId % (WARPS_PER_BLOCK / 2)) * 2) : (N * (warpId % (WARPS_PER_BLOCK / 2)) * 2 + shmem_idx_b_off); // First half of the warp copies the first row / column of the matrix, // the second half of the warp copies the next. int4 *lane_ptr = (int4 *)(warp_ptr + tile_k * K + (laneId / CHUNK_COPY_LINE_LANES) * K_GLOBAL) + (laneId % CHUNK_COPY_LINE_LANES); // Shift the second half of the warp to the next row / column in the // shared memory. shmem_idx += laneId / CHUNK_COPY_LINE_LANES; #pragma unroll for (int i = 0; i < ((WARP_SIZE / 2) / CHUNK_COPY_LINES_PER_WARP) * 2; i++) { // Copy 16 bytes at once in each lane. *((int4 *)&shmem[shmem_idx][0] + (laneId % CHUNK_COPY_LINE_LANES)) = *lane_ptr; // Advance the global memory pointer and the shared memory index. lane_ptr = (int4 *)((uint8_t *)lane_ptr + K_GLOBAL * CHUNK_COPY_LINES_PER_WARP); shmem_idx += CHUNK_COPY_LINES_PER_WARP; } __syncthreads(); // Compute a grid of C matrix tiles in each warp. #pragma unroll for (int k_step = 0; k_step < CHUNK_K; k_step++) { wmma::fragment a[WARP_COL_TILES]; wmma::fragment b[WARP_ROW_TILES]; #pragma unroll for (int i = 0; i < WARP_COL_TILES; i++) { size_t shmem_idx_a = (warpId / 2) * M * 2 + (i * M); const uint8_t *tile_ptr = &shmem[shmem_idx_a][k_step * K]; wmma::load_matrix_sync(a[i], tile_ptr, K * CHUNK_K + SKEW_UINT8); #pragma unroll for (int j = 0; j < WARP_ROW_TILES; j++) { if (i == 0) { // Load the B matrix fragment once, because it is going to be // reused against the other A matrix fragments. size_t shmem_idx_b = shmem_idx_b_off + (WARP_ROW_TILES * N) * (warpId % 2) + (j * N); const uint8_t *tile_ptr = &shmem[shmem_idx_b][k_step * K]; wmma::load_matrix_sync(b[j], tile_ptr, K * CHUNK_K + SKEW_UINT8); } wmma::mma_sync(c[i][j], a[i], b[j], c[i][j]); } } } __syncthreads(); } // Store the D fragments to shared memory. #pragma unroll for (int i = 0; i < WARP_COL_TILES; i++) { #pragma unroll for (int j = 0; j < WARP_ROW_TILES; j++) { #pragma unroll // Uniform, point-wise transformations of ALL fragment elements by ALL // threads in the warp are well-defined even though element indices // within fragment storage are not defined. for (int t = 0; t < c[i][j].num_elements; t++) c[i][j].x[t] *= alpha; int *tile_ptr = shmem_warp_tile_ptr + i * SHMEM_STRIDE * K + j * N; wmma::store_matrix_sync(tile_ptr, c[i][j], SHMEM_STRIDE, C_LAYOUT); } } __syncthreads(); // Now that shared memory contains all the D tiles, stream them to global // memory. int *dst_gmem_warp_stream_ptr = &D[gmem_idx]; #pragma unroll for (int i = 0; i < K; i++) { *((int4 *)(dst_gmem_warp_stream_ptr + GLOBAL_MEM_STRIDE * i) + laneId) = *((int4 *)(shmem_warp_stream_ptr + SHMEM_STRIDE * i) + laneId); } __syncthreads(); } } // Performs an MxNxK GEMM (C=alpha*A*B + beta*C) assuming: // 1) Matrices are packed in memory. // 2) M, N and K are multiples of 16. // 3) Neither A nor B are transposed. // Note: This is a less performant version of the compute_gemm_imma kernel. It // is designed for // demonstration purposes only to show the CUDA WMMA API use without // relying on availability of the shared memory. __global__ void simple_wmma_gemm_imma(const uint8_t *a, const uint8_t *b, const int *c, int *d, int m_ld, int n_ld, int k_ld, int alpha, int beta) { // Leading dimensions. Packed with no transpositions. int lda = m_ld; int ldb = k_ld; int ldc = n_ld; // Tile using a 2D grid int warpM = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize; int warpN = (blockIdx.y * blockDim.y + threadIdx.y); // Declare the fragments wmma::fragment a_frag; wmma::fragment b_frag; wmma::fragment acc_frag; wmma::fragment c_frag; wmma::fill_fragment(acc_frag, 0.0f); // Loop over k for (int i = 0; i < k_ld; i += WMMA_K) { int aCol = i; int aRow = warpM * WMMA_M; int bCol = i; int bRow = warpN * WMMA_N; // Bounds checking if (aRow < m_ld && aCol < k_ld && bRow < k_ld && bCol < n_ld) { // Load the inputs wmma::load_matrix_sync(a_frag, a + aCol + aRow * lda, lda); wmma::load_matrix_sync(b_frag, b + bCol + bRow * ldb, ldb); // Perform the matrix multiplication wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag); } } // Load in the current value of c, scale it by beta, and add this our result // scaled by alpha int cCol = warpN * WMMA_N; int cRow = warpM * WMMA_M; if (cRow < m_ld && cCol < n_ld) { wmma::load_matrix_sync(c_frag, c + cCol + cRow * ldc, ldc, wmma::mem_row_major); for (int i = 0; i < c_frag.num_elements; i++) { c_frag.x[i] = alpha * acc_frag.x[i] + beta * c_frag.x[i]; } // Store the output wmma::store_matrix_sync(d + cCol + cRow * ldc, c_frag, ldc, wmma::mem_row_major); } } __host__ void matMultiplyOnHost(uint8_t *A, uint8_t *B, int *C, int alpha, int beta, int numARows, int numAColumns, int numBRows, int numBColumns, int numCRows, int numCColumns) { for (int i = 0; i < numCRows; i++) { for (int j = 0; j < numCColumns; j++) { int temp = 0; for (int k = 0; k < numAColumns; k++) { temp += A[i * numAColumns + k] * B[j * numBRows + k]; } C[i * numCColumns + j] = temp * alpha + beta * C[i * numCColumns + j]; } } } int main(int argc, char **argv) { printf("Initializing...\n"); int dev = findCudaDevice(argc, (const char **)argv); cudaDeviceProp deviceProp; checkCudaErrors(cudaGetDeviceProperties(&deviceProp, dev)); // Tensor cores require a GPU of Volta (SM72) architecture or higher. if (deviceProp.major < 7 || (deviceProp.major <= 7 && deviceProp.minor < 2)) { printf( "immaTensorCoreGemm requires SM 7.2 or higher to use Tensor Cores. " "Exiting...\n"); exit(EXIT_WAIVED); } printf("M: %d (%d x %d)\n", M_GLOBAL, M, M_TILES); printf("N: %d (%d x %d)\n", N_GLOBAL, N, N_TILES); printf("K: %d (%d x %d)\n", K_GLOBAL, K, K_TILES); uint8_t *A_h = NULL; uint8_t *B_h = NULL; int *C_h = NULL; #if CPU_DEBUG int *result_hD = NULL; int *result_host = NULL; #endif A_h = (uint8_t *)malloc(sizeof(uint8_t) * M_GLOBAL * K_GLOBAL); B_h = (uint8_t *)malloc(sizeof(uint8_t) * K_GLOBAL * N_GLOBAL); C_h = (int *)malloc(sizeof(int) * M_GLOBAL * N_GLOBAL); #if CPU_DEBUG result_hD = (int *)malloc(sizeof(int) * M_GLOBAL * N_GLOBAL); result_host = (int *)malloc(sizeof(int) * M_GLOBAL * N_GLOBAL); #endif uint8_t *A = NULL; uint8_t *B = NULL; int *C = NULL; int *D = NULL; checkCudaErrors( cudaMalloc(reinterpret_cast(&A), sizeof(uint8_t) * M_GLOBAL * K_GLOBAL)); checkCudaErrors( cudaMalloc(reinterpret_cast(&B), sizeof(uint8_t) * N_GLOBAL * K_GLOBAL)); checkCudaErrors(cudaMalloc(reinterpret_cast(&C), sizeof(int) * M_GLOBAL * N_GLOBAL)); checkCudaErrors(cudaMalloc(reinterpret_cast(&D), sizeof(int) * M_GLOBAL * N_GLOBAL)); assert(((unsigned long long)A) % 128 == 0); assert(((unsigned long long)B) % 128 == 0); assert(((unsigned long long)C) % 128 == 0); assert(((unsigned long long)D) % 128 == 0); init_host_matrices(A_h, B_h, C_h); checkCudaErrors(cudaMemcpy(A, A_h, sizeof(uint8_t) * M_GLOBAL * K_GLOBAL, cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpy(B, B_h, sizeof(uint8_t) * N_GLOBAL * K_GLOBAL, cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpy(C, C_h, sizeof(int) * M_GLOBAL * N_GLOBAL, cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemset(D, 0, sizeof(int) * M_GLOBAL * N_GLOBAL)); printf("Preparing data for GPU...\n"); assert(((unsigned long long)A) % 128 == 0); assert(((unsigned long long)B) % 128 == 0); assert(((unsigned long long)C) % 128 == 0); assert(((unsigned long long)D) % 128 == 0); enum { // Compute the right amount of shared memory to request. // We need shared memory to hold per-CTA C and D matrix tiles, and to cache // per-CTA chunks // of the A and B matrices. Therefore, the right amount to request is the // maximum of those // two numbers. SHMEM_SZ = MAX(sizeof(uint8_t) * (BLOCK_COL_TILES * M) * (CHUNK_K * K + SKEW_UINT8) * 2, M * (BLOCK_ROW_WARPS * WARP_ROW_TILES) * N * (BLOCK_COL_WARPS * WARP_COL_TILES) * sizeof(int)) }; printf("Required shared memory size: %lu Kb\n", SHMEM_SZ / 1024UL); int alpha = 1; int beta = 1; cudaEvent_t start, stop; checkCudaErrors(cudaEventCreate(&start)); checkCudaErrors(cudaEventCreate(&stop)); checkCudaErrors(cudaEventRecord(start)); // If enough shared memory available on the GPU use high performant kernel if (deviceProp.sharedMemPerMultiprocessor >= SHMEM_SZ) { printf("Computing... using high performance kernel compute_gemm_imma \n"); checkCudaErrors(cudaFuncSetAttribute( compute_gemm_imma, cudaFuncAttributeMaxDynamicSharedMemorySize, SHMEM_SZ)); checkKernelErrors( (compute_gemm_imma<<>>(A, B, C, D, alpha, beta))); #if CPU_DEBUG checkCudaErrors(cudaMemcpy(result_hD, D, sizeof(int) * M_GLOBAL * N_GLOBAL, cudaMemcpyDeviceToHost)); #endif } else { dim3 gridDim; dim3 blockDim; // blockDim.x must be a multiple of warpSize // 128x4 means we have 16 warps and a block computes a 64x64 output tile blockDim.x = 128; blockDim.y = 4; gridDim.x = (M_GLOBAL + (WMMA_M * blockDim.x / 32 - 1)) / (WMMA_M * blockDim.x / 32); gridDim.y = (N_GLOBAL + WMMA_N * blockDim.y - 1) / (WMMA_N * blockDim.y); printf("Computing... using simple_wmma_gemm_imma kernel\n"); simple_wmma_gemm_imma<<>>(A, B, C, D, M_GLOBAL, N_GLOBAL, K_GLOBAL, alpha, beta); #if CPU_DEBUG checkCudaErrors(cudaMemcpy(result_hD, D, sizeof(int) * M_GLOBAL * N_GLOBAL, cudaMemcpyDeviceToHost)); #endif } checkCudaErrors(cudaEventRecord(stop)); checkCudaErrors(cudaEventSynchronize(stop)); #if CPU_DEBUG printf("Verifying correctness of the computations...\n"); memcpy(result_host, C_h, sizeof(int) * M_GLOBAL * N_GLOBAL); matMultiplyOnHost(A_h, B_h, result_host, alpha, beta, M_GLOBAL, K_GLOBAL, K_GLOBAL, N_GLOBAL, M_GLOBAL, N_GLOBAL); for (int i = 0; i < N_GLOBAL * M_GLOBAL; i++) { if (abs(result_hD[i] - result_host[i]) > 0) { printf("mismatch i=%d result_hD=%d result_host=%d\n", i, result_hD[i], result_host[i]); } } free(result_host); free(result_hD); #endif float milliseconds = 0; checkCudaErrors(cudaEventElapsedTime(&milliseconds, start, stop)); printf("Time: %f ms\n", milliseconds); printf("TOPS: %.2f\n", (((double)M_GLOBAL * N_GLOBAL * K_GLOBAL * 2)/(milliseconds/1000.)) / 1e12); free(A_h); free(B_h); free(C_h); checkCudaErrors(cudaFree(reinterpret_cast(A))); checkCudaErrors(cudaFree(reinterpret_cast(B))); checkCudaErrors(cudaFree(reinterpret_cast(C))); checkCudaErrors(cudaFree(reinterpret_cast(D))); return EXIT_SUCCESS; }