/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ //////////////////////////////////////////////////////////////////////////////// // 0 1 2 3 4 5 6 7 // 0 + . . . . . . . // 1 . . . . . . . . // 2 . . . . . . . . // 3 . . . * . . . . // 4 . . . . . . . . // 5 . . . . . . . . // 6 . . . . . . . . // 7 . . . . . . . . // // * - Base point for every thread, + - pixel around which ColorDistance is // computed // The idea behind this method: // - Every thread in a 8x8 block computes just one ColorDistance // - It is saved in the weights array that is shared across the threads // - Threads are synced // - For every pixel inside the block weights are considered to be constants //////////////////////////////////////////////////////////////////////////////// #include namespace cg = cooperative_groups; __global__ void NLM2(TColor *dst, int imageW, int imageH, float Noise, float lerpC, cudaTextureObject_t texImage) { // Handle to thread block group cg::thread_block cta = cg::this_thread_block(); // Weights cache __shared__ float fWeights[BLOCKDIM_X * BLOCKDIM_Y]; const int ix = blockDim.x * blockIdx.x + threadIdx.x; const int iy = blockDim.y * blockIdx.y + threadIdx.y; // Add half of a texel to always address exact texel centers const float x = (float)ix + 0.5f; const float y = (float)iy + 0.5f; const float cx = blockDim.x * blockIdx.x + NLM_WINDOW_RADIUS + 0.5f; const float cy = blockDim.x * blockIdx.y + NLM_WINDOW_RADIUS + 0.5f; if (ix < imageW && iy < imageH) { // Find color distance from current texel to the center of NLM window float weight = 0; for (float n = -NLM_BLOCK_RADIUS; n <= NLM_BLOCK_RADIUS; n++) for (float m = -NLM_BLOCK_RADIUS; m <= NLM_BLOCK_RADIUS; m++) weight += vecLen(tex2D(texImage, cx + m, cy + n), tex2D(texImage, x + m, y + n)); // Geometric distance from current texel to the center of NLM window float dist = (threadIdx.x - NLM_WINDOW_RADIUS) * (threadIdx.x - NLM_WINDOW_RADIUS) + (threadIdx.y - NLM_WINDOW_RADIUS) * (threadIdx.y - NLM_WINDOW_RADIUS); // Derive final weight from color and geometric distance weight = __expf(-(weight * Noise + dist * INV_NLM_WINDOW_AREA)); // Write the result to shared memory fWeights[threadIdx.y * BLOCKDIM_X + threadIdx.x] = weight; // Wait until all the weights are ready cg::sync(cta); // Normalized counter for the NLM weight threshold float fCount = 0; // Total sum of pixel weights float sumWeights = 0; // Result accumulator float3 clr = {0, 0, 0}; int idx = 0; // Cycle through NLM window, surrounding (x, y) texel for (float i = -NLM_WINDOW_RADIUS; i <= NLM_WINDOW_RADIUS + 1; i++) for (float j = -NLM_WINDOW_RADIUS; j <= NLM_WINDOW_RADIUS + 1; j++) { // Load precomputed weight float weightIJ = fWeights[idx++]; // Accumulate (x + j, y + i) texel color with computed weight float4 clrIJ = tex2D(texImage, x + j, y + i); clr.x += clrIJ.x * weightIJ; clr.y += clrIJ.y * weightIJ; clr.z += clrIJ.z * weightIJ; // Sum of weights for color normalization to [0..1] range sumWeights += weightIJ; // Update weight counter, if NLM weight for current window texel // exceeds the weight threshold fCount += (weightIJ > NLM_WEIGHT_THRESHOLD) ? INV_NLM_WINDOW_AREA : 0; } // Normalize result color by sum of weights sumWeights = 1.0f / sumWeights; clr.x *= sumWeights; clr.y *= sumWeights; clr.z *= sumWeights; // Choose LERP quotient basing on how many texels // within the NLM window exceeded the weight threshold float lerpQ = (fCount > NLM_LERP_THRESHOLD) ? lerpC : 1.0f - lerpC; // Write final result to global memory float4 clr00 = tex2D(texImage, x, y); clr.x = lerpf(clr.x, clr00.x, lerpQ); clr.y = lerpf(clr.y, clr00.y, lerpQ); clr.z = lerpf(clr.z, clr00.z, lerpQ); dst[imageW * iy + ix] = make_color(clr.x, clr.y, clr.z, 0); } } extern "C" void cuda_NLM2(TColor *d_dst, int imageW, int imageH, float Noise, float LerpC, cudaTextureObject_t texImage) { dim3 threads(BLOCKDIM_X, BLOCKDIM_Y); dim3 grid(iDivUp(imageW, BLOCKDIM_X), iDivUp(imageH, BLOCKDIM_Y)); NLM2<<>>(d_dst, imageW, imageH, Noise, LerpC, texImage); } //////////////////////////////////////////////////////////////////////////////// // Stripped NLM2 kernel, only highlighting areas with different LERP directions //////////////////////////////////////////////////////////////////////////////// __global__ void NLM2diag(TColor *dst, int imageW, int imageH, float Noise, float LerpC, cudaTextureObject_t texImage) { // Handle to thread block group cg::thread_block cta = cg::this_thread_block(); // Weights cache __shared__ float fWeights[BLOCKDIM_X * BLOCKDIM_Y]; const int ix = blockDim.x * blockIdx.x + threadIdx.x; const int iy = blockDim.y * blockIdx.y + threadIdx.y; // Add half of a texel to always address exact texel centers const float x = (float)ix + 0.5f; const float y = (float)iy + 0.5f; const float cx = blockDim.x * blockIdx.x + NLM_WINDOW_RADIUS + 0.5f; const float cy = blockDim.x * blockIdx.y + NLM_WINDOW_RADIUS + 0.5f; if (ix < imageW && iy < imageH) { // Find color distance from current texel to the center of NLM window float weight = 0; for (float n = -NLM_BLOCK_RADIUS; n <= NLM_BLOCK_RADIUS + 1; n++) for (float m = -NLM_BLOCK_RADIUS; m <= NLM_BLOCK_RADIUS + 1; m++) weight += vecLen(tex2D(texImage, cx + m, cy + n), tex2D(texImage, x + m, y + n)); // Geometric distance from current texel to the center of NLM window float dist = (threadIdx.x - NLM_WINDOW_RADIUS) * (threadIdx.x - NLM_WINDOW_RADIUS) + (threadIdx.y - NLM_WINDOW_RADIUS) * (threadIdx.y - NLM_WINDOW_RADIUS); // Derive final weight from color and geometric distance weight = __expf(-(weight * Noise + dist * INV_NLM_WINDOW_AREA)); // Write the result to shared memory fWeights[threadIdx.y * BLOCKDIM_X + threadIdx.x] = weight; // Wait until all the weights are ready cg::sync(cta); // Normalized counter for the NLM weight threshold float fCount = 0; int idx = 0; // Cycle through NLM window, surrounding (x, y) texel for (float n = -NLM_WINDOW_RADIUS; n <= NLM_WINDOW_RADIUS + 1; n++) for (float m = -NLM_WINDOW_RADIUS; m <= NLM_WINDOW_RADIUS + 1; m++) { // Load precomputed weight float weightIJ = fWeights[idx++]; // Update weight counter, if NLM weight for current window texel // exceeds the weight threshold fCount += (weightIJ > NLM_WEIGHT_THRESHOLD) ? INV_NLM_WINDOW_AREA : 0; } // Choose LERP quotient basing on how many texels // within the NLM window exceeded the weight threshold float lerpQ = (fCount > NLM_LERP_THRESHOLD) ? 1.0f : 0.0f; // Write final result to global memory dst[imageW * iy + ix] = make_color(lerpQ, 0, (1.0f - lerpQ), 0); }; } extern "C" void cuda_NLM2diag(TColor *d_dst, int imageW, int imageH, float Noise, float LerpC, cudaTextureObject_t texImage) { dim3 threads(BLOCKDIM_X, BLOCKDIM_Y); dim3 grid(iDivUp(imageW, BLOCKDIM_X), iDivUp(imageH, BLOCKDIM_Y)); NLM2diag<<>>(d_dst, imageW, imageH, Noise, LerpC, texImage); }