/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Example of integrating CUDA functions into an existing * application / framework. * Host part of the device code. * Compiled with Cuda compiler. */ // System includes #include #include #include #include #include // CUDA runtime #include // helper functions and utilities to work with CUDA #include #include #ifndef MAX #define MAX(a, b) (a > b ? a : b) #endif //////////////////////////////////////////////////////////////////////////////// // declaration, forward extern "C" void computeGold(char *reference, char *idata, const unsigned int len); extern "C" void computeGold2(int2 *reference, int2 *idata, const unsigned int len); /////////////////////////////////////////////////////////////////////////////// //! Simple test kernel for device functionality //! @param g_odata memory to process (in and out) /////////////////////////////////////////////////////////////////////////////// __global__ void kernel(int *g_data) { // write data to global memory const unsigned int tid = threadIdx.x; int data = g_data[tid]; // use integer arithmetic to process all four bytes with one thread // this serializes the execution, but is the simplest solutions to avoid // bank conflicts for this very low number of threads // in general it is more efficient to process each byte by a separate thread, // to avoid bank conflicts the access pattern should be // g_data[4 * wtid + wid], where wtid is the thread id within the half warp // and wid is the warp id // see also the programming guide for a more in depth discussion. g_data[tid] = ((((data << 0) >> 24) - 10) << 24) | ((((data << 8) >> 24) - 10) << 16) | ((((data << 16) >> 24) - 10) << 8) | ((((data << 24) >> 24) - 10) << 0); } /////////////////////////////////////////////////////////////////////////////// //! Demonstration that int2 data can be used in the cpp code //! @param g_odata memory to process (in and out) /////////////////////////////////////////////////////////////////////////////// __global__ void kernel2(int2 *g_data) { // write data to global memory const unsigned int tid = threadIdx.x; int2 data = g_data[tid]; // use integer arithmetic to process all four bytes with one thread // this serializes the execution, but is the simplest solutions to avoid // bank conflicts for this very low number of threads // in general it is more efficient to process each byte by a separate thread, // to avoid bank conflicts the access pattern should be // g_data[4 * wtid + wid], where wtid is the thread id within the half warp // and wid is the warp id // see also the programming guide for a more in depth discussion. g_data[tid].x = data.x - data.y; } //////////////////////////////////////////////////////////////////////////////// //! Entry point for Cuda functionality on host side //! @param argc command line argument count //! @param argv command line arguments //! @param data data to process on the device //! @param len len of \a data //////////////////////////////////////////////////////////////////////////////// extern "C" bool runTest(const int argc, const char **argv, char *data, int2 *data_int2, unsigned int len) { // use command-line specified CUDA device, otherwise use device with highest // Gflops/s findCudaDevice(argc, (const char **)argv); const unsigned int num_threads = len / 4; assert(0 == (len % 4)); const unsigned int mem_size = sizeof(char) * len; const unsigned int mem_size_int2 = sizeof(int2) * len; // allocate device memory char *d_data; checkCudaErrors(cudaMalloc((void **)&d_data, mem_size)); // copy host memory to device checkCudaErrors(cudaMemcpy(d_data, data, mem_size, cudaMemcpyHostToDevice)); // allocate device memory for int2 version int2 *d_data_int2; checkCudaErrors(cudaMalloc((void **)&d_data_int2, mem_size_int2)); // copy host memory to device checkCudaErrors(cudaMemcpy(d_data_int2, data_int2, mem_size_int2, cudaMemcpyHostToDevice)); // setup execution parameters dim3 grid(1, 1, 1); dim3 threads(num_threads, 1, 1); dim3 threads2(len, 1, 1); // more threads needed fir separate int2 version // execute the kernel kernel<<>>((int *)d_data); kernel2<<>>(d_data_int2); // check if kernel execution generated and error getLastCudaError("Kernel execution failed"); // compute reference solutions char *reference = (char *)malloc(mem_size); computeGold(reference, data, len); int2 *reference2 = (int2 *)malloc(mem_size_int2); computeGold2(reference2, data_int2, len); // copy results from device to host checkCudaErrors(cudaMemcpy(data, d_data, mem_size, cudaMemcpyDeviceToHost)); checkCudaErrors(cudaMemcpy(data_int2, d_data_int2, mem_size_int2, cudaMemcpyDeviceToHost)); // check result bool success = true; for (unsigned int i = 0; i < len; i++) { if (reference[i] != data[i] || reference2[i].x != data_int2[i].x || reference2[i].y != data_int2[i].y) { success = false; } } // cleanup memory checkCudaErrors(cudaFree(d_data)); checkCudaErrors(cudaFree(d_data_int2)); free(reference); free(reference2); return success; }