/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "FDTD3dReference.h" #include #include #include #include #include void generateRandomData(float *data, const int dimx, const int dimy, const int dimz, const float lowerBound, const float upperBound) { srand(0); for (int iz = 0; iz < dimz; iz++) { for (int iy = 0; iy < dimy; iy++) { for (int ix = 0; ix < dimx; ix++) { *data = (float)(lowerBound + ((float)rand() / (float)RAND_MAX) * (upperBound - lowerBound)); ++data; } } } } void generatePatternData(float *data, const int dimx, const int dimy, const int dimz, const float lowerBound, const float upperBound) { for (int iz = 0; iz < dimz; iz++) { for (int iy = 0; iy < dimy; iy++) { for (int ix = 0; ix < dimx; ix++) { *data = (float)(lowerBound + ((float)iz / (float)dimz) * (upperBound - lowerBound)); ++data; } } } } bool fdtdReference(float *output, const float *input, const float *coeff, const int dimx, const int dimy, const int dimz, const int radius, const int timesteps) { const int outerDimx = dimx + 2 * radius; const int outerDimy = dimy + 2 * radius; const int outerDimz = dimz + 2 * radius; const size_t volumeSize = outerDimx * outerDimy * outerDimz; const int stride_y = outerDimx; const int stride_z = stride_y * outerDimy; float *intermediate = 0; const float *bufsrc = 0; float *bufdst = 0; float *bufdstnext = 0; // Allocate temporary buffer printf(" calloc intermediate\n"); intermediate = (float *)calloc(volumeSize, sizeof(float)); // Decide which buffer to use first (result should end up in output) if ((timesteps % 2) == 0) { bufsrc = input; bufdst = intermediate; bufdstnext = output; } else { bufsrc = input; bufdst = output; bufdstnext = intermediate; } // Run the FDTD (naive method) printf(" Host FDTD loop\n"); for (int it = 0; it < timesteps; it++) { printf("\tt = %d\n", it); const float *src = bufsrc; float *dst = bufdst; for (int iz = -radius; iz < dimz + radius; iz++) { for (int iy = -radius; iy < dimy + radius; iy++) { for (int ix = -radius; ix < dimx + radius; ix++) { if (ix >= 0 && ix < dimx && iy >= 0 && iy < dimy && iz >= 0 && iz < dimz) { float value = (*src) * coeff[0]; for (int ir = 1; ir <= radius; ir++) { value += coeff[ir] * (*(src + ir) + *(src - ir)); // horizontal value += coeff[ir] * (*(src + ir * stride_y) + *(src - ir * stride_y)); // vertical value += coeff[ir] * (*(src + ir * stride_z) + *(src - ir * stride_z)); // in front & behind } *dst = value; } else { *dst = *src; } ++dst; ++src; } } } // Rotate buffers float *tmp = bufdst; bufdst = bufdstnext; bufdstnext = tmp; bufsrc = (const float *)tmp; } printf("\n"); if (intermediate) free(intermediate); return true; } bool compareData(const float *output, const float *reference, const int dimx, const int dimy, const int dimz, const int radius, const float tolerance) { for (int iz = -radius; iz < dimz + radius; iz++) { for (int iy = -radius; iy < dimy + radius; iy++) { for (int ix = -radius; ix < dimx + radius; ix++) { if (ix >= 0 && ix < dimx && iy >= 0 && iy < dimy && iz >= 0 && iz < dimz) { // Determine the absolute difference float difference = fabs(*reference - *output); float error; // Determine the relative error if (*reference != 0) error = difference / *reference; else error = difference; // Check the error is within the tolerance if (error > tolerance) { printf("Data error at point (%d,%d,%d)\t%f instead of %f\n", ix, iy, iz, *output, *reference); return false; } } ++output; ++reference; } } } return true; }