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 Abstract 

 

The computation of all or a subset of all eigenvalues is an important problem in 
linear algebra, statistics, physics, and many other fields. This report describes the 
implementation of a bisection algorithm for the computation of all eigenvalues of a 
tridiagonal symmetric matrix of arbitrary size with CUDA.  

 

Background 

In this section we will establish our notation and provide the mathematical background for 
the remainder of the report. On a first read some of the presented material might prove 
difficult for the mathematically less inclined reader. Most theorems can, however, be 
employed as black box results and their value becomes apparent when they are used in the 
next sections. Readers interested in a more thorough discussion of eigen analysis algorithms 
are referred, for example, to the book by Parlett [4] or the thesis by Dhillon [13].  

Notation 

In this report we will use Householder’s notation. Scalars are denoted by roman or greek 

lowercase letters such as  a , b , and c  and  ,  ,  and  . Lowercase bold letters such as 

 n

iia
1

a ,  n

iib
1

b , and  n

iic
1

c  are used to represent vectors. If not mentioned 

otherwise, all vectors are assumed to be column vectors. Matrices are denoted by uppercase 

bold roman letters such as A , B , and T . Matrix elements are scalars ija  indexed with two 

indices i  and j , where i  denotes the row index and j  the column index. A matrix 
nnA  can thus be written as 

























nnn

n

aa

aa

....

....

....

....

1

111

A . 

The (main) diagonal of a matrix 
nmA  is formed by the elements iia  with ni ...1 . 

For brevity we will usually omit the second index and consider the diagonal as a vector a of 

length n  whose elements are iii aa  . The elements ija  of A  with kji   and 

 1,...,1  nk  form the k -th upper diagonal of A , and the element ija  with jki   

the k -th lower diagonal. Analogous to the main diagonal, the k -th upper and lower 

diagonal can be represented by vectors of length kn . A matrix that has non-zero 
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elements only on the main diagonal is called a diagonal matrix. An important instance is the 

identity matrix where all diagonal elements are 1 . 

A square matrix 
nnA  is symmetric if jiij aa   for all i  and j . We will usually use a 

symmetric letter such as A  or T  to denote such a matrix. The transpose of a matrix 
nmA will be denoted with 

T
A . We will sometimes also transpose vectors. In this case 

we treat a vector of length n  as 1n  matrix.  

Of particular interest for this report are tridiagonal symmetric matrices where only the main 
dsiagonal and the first lower and upper diagonal are non-zero 





























nnnn

nn

ab

b

b

bab

ba

)1(

)1(

32

232221

1211

0..0

....0..

0....0

..0

0..0

T  

with jiij bb  . If not mentioned otherwise, we will use T  to denote a tridiagonal symmetric 

matrix.  

Eigenvalues and Eigenvectors 

Definition 1: Let 
nnA  be a square matrix. An eigenvalue   of A  is a scalar satisfying 

uAu  . 

The vector 0u   is a (right) eigenvector of A . The spectrum )(A  of A  is formed by the 

set of all eigenvalues of A  

 i )(A . 

If A  is non-degenerated then the cardinality of )(A  is n .  

Corollary 1:  The spectrum of a diagonal matrix D  with non-zero elements id  is  

   n

iid
1

D . 

If we arrange the spectrum of a general square matrix A  in a diagonal matrix Λ , and form a 

square matrix U  so that their columns are the eigenvectors, then the eigen decomposition 

of A  can be written as 

UΛAU  . 

The eigenvalues i  are also the roots of the characteristic polynomial  

  0det  IA i . 

Eigenvalues can therefore in general be real or complex. For a symmetric matrix the 
eigenvalues are guaranteed to be real [1, pp. 393]. 
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Gerschgorin Circle Theorem 

Theorem 1. (Gerschgorin Circle Theorem) Let 
nn x A  be symmetric and 

nn x Q  

be orthogonal. If FDAQQ T
, where D  is diagonal and F  has zero diagonal entries, 

then 

 iiii

n

i

rdrd 


,)(
1

A  

with 



n

j

iji fr
1

 for ni ...1 . 

Proof: See [1, pp. 395].                                                     

If we let Q  be the (trivially orthogonal) identity matrix then FDAQQ T
 is always 

satisfied. In practice one wants to employ a matrix Q  such that AQQ
T

 is (approximately) 

diagonally dominant. This improves the quality of the bounds provided by the Gerschgorin 

interval  iiii

n

i

rdrd 


,
1

  which can otherwise be rather pessimistic. 

Corollary 2. (Gerschgorin Circle Theorem for Symmetric, Tridiagonal Matrices) Let 
nn x T  be tridiagonal and symmetric, and let a  and b  be the vectors containing the 

diagonal and off-diagonal elements of T , respectively. The spectrum  T  is then bound: 

   iiii

n

i

rara 


,
1

T  

with 1 iii bbr  for 1:2  ni , 11 br  , and 1 nn br . 

Eigenvalue Shifts and Sylvester’s Law of Inertia 

Theorem 2. Let 
nn x A  be a square matrix with eigenvalues i , and let   be a 

shift index. The matrix IAA    has then eigenvalues   ii . The eigenvectors of 

A  and A  are identical. 

Proof: Consider the characteristic polynomial 

0)det(  IA i . 

By replacing A  with IAA    we obtain 

   0det  IIA i . 

Rearranging terms yields 

  
   .0det

0det





IA

IIA









i

i
 

The second claim follows by simplifying 
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   UIΛUIA    

which is the eigenvalues equation UΛAU   with IAA    and IΛΛ   .     

Theorem 2 establishes a relationship between the eigenvalues of A  and those of a shifted 

version A  of A . It is the foundation for many eigenvalue algorithms because the shift 

affects the distance between eigenvalues, and therefore the conditioning of the problem, but 

does not change the eigenvectors. For eigenvalues of A  that are close together it is often 

more stable and more efficient to first shift A  and then determine the eigenvalues of the 
shifted matrix. Theorem 2 can then be used to relate the eigenvalues of the shifted matrix 

back to those of A . See, for example, the technical report by Willems et al. [2] for a more 
detailed discussion. 

Theorem 3. (Sylvester’s Law of Inertia) Let the inertia of a square matrix 
nn x A  be a 

triple  pzn ,,  of integer numbers, with n , z , and p  being the numbers of negative, zero, 

and positive elements in the spectrum of A , respectively. If A  is symmetric and 
nn x X  is nonsingular, then the matrices A  and AXX

T
have the same inertia. 

Proof: See [1, pp. 403]                   

Theorem 4. Let 
nn x T  be tridiagonal and symmetric, and positive definite, and let 

0iiba  for ni :1 , that is T  is non degenerated, then there exists a factorization  

TLDLT   

where D  is diagonal and L  is lower bidiagonal with all diagonal elements being 1 .  

Proof: Consider the Cholesky factorization 
T

LLT   of T . The existence of an 
TLDL  

factorization of T then follows immediately with 
2/1

LDL   [13].                                 

Positive definite factorizations such as the Cholesky factorization or the 
TLDL  

factorization exists only if a matrix is positive definite. If this is not the case for a given 

tridiagonal symmetric matrix then we can choose an initial shift so that T  becomes positive 
definite and use Theorem 2 to relate the computed eigenvalues to those of the original 

matrix, see [14] for a more detailed discussion. For matrices where any 0iiba  it is always 

possible to split the input matrix and compute a factorization for the two resulting sub-
matrices; refer to the technical report by Willems et al. [2] for more details.  

Corollary 3. The inertia of a tridiagonal symmetric matrix 
nn x T  can be computed by 

first determining the 
TLDL  factorization of T , and then counting positive and negative 

eigenvalues of the diagonal matrix D .  

Eigenvalue Count 

Definition 2. Let 
nn x T  be symmetric and tridiagonal, and let x  be a shift. The 

eigenvalue count  xC  of T  is then the number of eigenvalues of T  smaller than x  

   TxxC   with     xix   |TT . 
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The eigenvalue count  21, xxC  of an interval  21, xx  is  

     1221, xCxCxxC  . 

An interval  21, xx  is empty if   0, 21 xxC . 

With Corollary 3 the eigenvalue count  xC  of T  can be found with the following 

algorithm: 

1. Shift T  by x  to obtain xT . 

2. Compute the 
TLDL  factorization of xT . 

3. Count the negative elements of the diagonal of D . 

Computing the full 
TLDL  factorization is however wasteful because we are only interested 

in the signs of the non-zero elements of D . Algorithm 1 finds the eigenvalue count )(xC  

efficiently without computing a full 
TLDL  factorization and without storing the full vector 

of diagonal elements of D  [6]1: 

Algorithm 1: 

Input: Diagonal and off-diagonal elements ai  and bi of the tridiagonal symmetric matrix 
nn x T , and a shift x . The algorithm requires b0 which is defined as bi 

= 0. 

Output: count  xC  

count = 0 

d = 1 

for i = 1 : n 

 d = ai  – x – (bi * bi ) / d 

 if (d < 0) 

       count = count + 1 

 end 

end 

                                                      

1 Let B  be an upper bidiagonal matrix and consider the tridiagonal symmetric matrix BBT
. Using 

Algorithm 1 to determine an eigenvalue count of BBT
 is unwise because computing BBT

 
explicitly is numerically unstable [1, p. 453]. Fernando therefore developed a modified version of 

Algorithm 1 that works directly with the non-zero elements of the B [7].  
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A Bisection-Like Algorithm to Compute Eigenvalues  

Armed with the results of the last section we can now discuss a bisection-like algorithm for 
computing all eigenvalues of a tridiagonal symmetric matrix.  

Let 
nn x T  be tridiagonal and symmetric, and let  0,00,0 ,ul  be the Gerschgorin interval 

of T , computed as described in Corollary 2. We can then subdivide  0,00,0 ,ul  into smaller 

child intervals  0,10,1 ,ul  and  1,11,1 ,ul , and obtain the eigenvalues counts   kulC 0,10,1 ,  

and   knulC 1,11,1 ,  using Algorithm 1. Obviously, the child intervals provide better 

bounds on the eigenvalues than the initial Gerschgorin interval did. If we subdivide each of 
the child intervals then we can further improve these bounds, and by recursively continuing 
this process we can obtain approximations to the eigenvalues to any desired accuracy. Many 
of the generated intervals will be empty and further subdividing these intervals will only 
create more empty – and for us irrelevant – intervals. We therefore do not subdivide empty 
intervals.  

As shown in Figure 1, the set of intervals generated by the subdivision process resembles an 
unbalanced binary tree with the Gerschgorin interval as root. A node of the tree is denoted 

by  kjkj ul ,, ,  with Jj  being the level of the tree and  jKk  being an index set 

defined over all nodes of the tree at level j . Leaf nodes are either empty intervals or 

 0.2,0.2  

Figure 1. Example interval tree for a matrix 
44T  with Gerschgorin interval  0.2,0.1  

and    7.1,2.1,2.0,25.0T . The grayed out intervals are empty leaf nodes. All other 

branches terminate at non-empty intervals. Depending on the desired accuracy, 
approximations of the eigenvalues can be obtained by further refining non-empty intervals and 
always keeping the child interval whose eigenvalue count is strictly positive. 

 0.0,0.2   0.2,0.0  

 0.2,0.1   0.1,0.0   0.0,0.1   0.1,0.2   

 0.1,5.0   0.2,5.1   0.0,5.0  

… … … 

 5.0,0.0   5.1,0.1  

… 
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converged intervals for which the (absolute or relative) size is smaller than a desired accuracy 

 . 

Algorithm 2 summarizes the bisection algorithm for computing the eigenvalues of a 

tridiagonal symmetric matrix T . 

Algorithm 2: 

Input: Tridiagonal symmetric matrix T , desired accuracy  . 

Output: Spectrum  T  of T  in a list O. 

2.1. Determine the Gerschgorin interval  0,00,0 ,ul  of T  and store the interval on a 

stack S. 

2.2. Repeat until S is empty: 

2.2.a. Pop one interval  kjkj ul ,, ,  from the stack. 

2.2.b. Compute  kjkjkj ulm ,,, , . 

2.2.c. Compute  kjmC ,  using Algorithm 1. 

2.2.d. Determine if non-empty child intervals converge.  

2.2.e. For non-empty, converged child intervals compute an approximation of the 

eigenvalue i  and store it in O at index  iC  . 

2.2.f. Push non-empty, unconverged child intervals on S. 
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CUDA Implementation 

In this section we will describe how Algorithm 2 has been adopted for a data parallel 
programming model and implemented with CUDA [10]. Our implementation employs the 
scan algorithm2 for various purposes. Readers not familiar with this algorithm should refer, 
for example, to the paper by Blelloch [8] or the technical report by Harris et al. [9] for more 
details. Throughout this report we will employ addition as scan operator. 

An Efficient Parallel Algorithm 
To implement Algorithm 2 efficiently on a data parallel architecture we first have to identify 
computations that are independent – and can thus be performed in parallel – and are similar or 
identical for many data items, for example all elements in an array.  

Design of a Parallel Algorithm 

When the eigenvalue count is computed with Algorithm 1 similar computations are 
performed for all diagonal and off-diagonal elements of the input matrix. The variable d, 
however, is iteratively updated in every iteration of the algorithm making every step of the 
loop dependent on the previous one. Algorithm 1 has therefore to be computed serially and 
we cannot parallelize the eigenvalue count computation for one shift. 

The interval splits in Step 2.2 of Algorithm 2 require the Gerschgorin interval as input and 
Step 2.1 therefore has to be computed before Step 2.2. Likewise, if we consider two child 

nodes  k

kj

k

kj ul ',1',1 ,   and  k

kj

k

kj ul 1',11',1 ,  , then we obviously first have to perform Steps 

2.2.a to 2.2f for the parent interval  kjkj ul ,, , , and generate  k

kj

k

kj ul ',1',1 ,   and 

 k

kj

k

kj ul 1',11',1 ,  , before we can process the child intervals. Taking this a step further and 

also considering dependencies across multiple levels, we can see that the interval tree can be 
regarded as a dependency graph for the computations. Nodes that have a (generalized) 
parent-child relationship depend on each other and have to be processed serially whereas the 
computations for other nodes are independent and can be performed in parallel.  

We will gain a better understanding of what this means in practice if we follow the program 

flow of the computations in Step 2.2. Initially, the stack S contains only the Gerschgorin 

interval  0,00,0 ,ul  which is the root of the interval tree. All other nodes are children of 

 0,00,0 ,ul  and we therefore have to perform Steps 2.2.a to 2.2f for this interval before we 

can process any other interval. Splitting the Gerschgorin interval creates the two nodes 

 0,10,1 ,ul  and  1,11,1 ,ul  at the first level of the interval tree. These nodes are siblings and 

can thus be processed independently. Performing the interval splitting for  0,10,1 ,ul  and 

 1,11,1 ,ul  in parallel – computing Steps 2.2a to 2.2f with different input data – yields the four 

intervals on level two of the tree. If we continue this process then the stack will always 

                                                      

2 In the literature the scan algorithm is also known as prefix sum. 
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contain only intervals on one level of the interval tree – not having a parent-child 
relationship – which can be processed in parallel. 

A data parallel implementation of Step 2.2 of Algorithm 2 is provided in the following 
algorithm. 

Algorithm 3. 

3.1. Perform in parallel for all intervals  kjkj ul ,, ,  (all at level j ) in the list L. 

3.1.a. Compute  kjkjkj ulm ,,, , . 

3.1.b. Compute  kjmC , . 

3.1.c. Determine if non-empty child intervals converge. 

3.1.d. For non-empty, converged child intervals compute an approximation of 

the eigenvalue i  and store it in O at index  iC  . 

3.1.e. Store non-empty, unconverged child intervals in L. 

Note that Algorithm 3 does no longer use a stack to store tree nodes but only a simple list L. 
The Algorithm terminates successfully when all non-empty intervals converged. The 
reported eigenvalues are then, for example, the midpoints of the final intervals. Care is 

required when the distance between eigenvalues is less than the desired accuracy   and 

converged intervals contain multiple eigenvalues. In this case we store k  instances of the 

eigenvalue approximation at the appropriate indices  iC  , where k  is the multiplicity of 

the eigenvalue. Situations where Algorithm 3, as described above, does not terminate 
successfully are described in the following sections. 

Thread Allocation 

Although it is possible to process multiple intervals with one thread, we decided to use the 
the “natural” approach on a data parallel architecture and employ one thread to process one 
interval. 

CUDA does not permit dynamic creation of new threads on the device. The number of 
threads specified at kernel launch time has therefore to match the maximum number of 

intervals that will be processed in parallel. Assuming that   is smaller than the minimum 
distance between any two eigenvalues, then the number of threads has to equal the number 
of eigenvalues of the input matrix. Note that this implies that for the first tree levels there 
are many more threads than intervals to process and many threads have to be inactive until a 
higher tree level has been reached. The available parallelism is therefore fully exploited only 
after some iterations of Step 3.1. 

Interval Subdivision 

Until now we did not specify how kjm ,  should be chosen but merely required that 

 kjkjkj ulm ,,, , . In the literature different approaches such as midpoint subdivision or 

Newton-like methods have been used to determine kjm ,  [6,7,15]. We employ midpoint 

subdivision which ensures that all child intervals on the same tree level have the same size. 
All converged intervals are therefore on the same tree level and reached at the same 
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processing step. This reduces divergence of the computations and therefore improves 
efficiency (cf. [10, Chapter 5.1.1.2]).  

Eigenvalue Count Computation 

At the beginning of this report we introduced Algorithm 1 to compute the eigenvalue count 

 xC . Although the algorithm is correct in a mathematical sense, it is not monotonic when 

computed numerically. It is therefore possible for the algorithm to return an eigenvalue 

count  1xC  so that    21 xCxC   although 21 xx  . Clearly, this will lead to problems in 

practice. In our implementation we therefore employ Algorithm FLCnt_IEEE from the 
paper by Demmel et al. [6] which is guaranteed to be monotonic. 

Data Representation 

The data that has to be stored for Algorithm 3 are the active intervals and the non-zero 
elements of the input matrix. Each interval is represented by its left and right interval 
bounds and the eigenvalue counts for the bounds. The input matrix can be represented by 
two vectors containing the main and the first upper (or lower) diagonal, respectively. 

Summarizing the guidelines from the CUDA programming guide [10], to obtain optimal 
performance on an NVIDIA compute device it is important to represent data so that 

 (high-latency) data transfers to global memory are minimized, 

 uncoalesced (non-aligned) data transfers to global memory are avoided, and 

 shared memory is employed as much as possible. 

We therefore would like to perform all computations entirely in shared memory and 
registers. Slow global memory access would then only be necessary at the beginning of the 
computations to load the data and at the end to store the result. The limited size of shared 

memory – devices with compute capabilities 1.x have 16  KB which corresponds 4096  

32 -bit variables – makes this unfortunately impossible. For matrices with more than 

20482048  elements shared memory would not even be sufficient to store the matrix 
representation. We therefore store only the active intervals in shared memory and the two 
vectors representing the input matrix are loaded from global memory whenever the 
eigenvalue count has to be computed in Step 3.1.b.  

Shared memory is not only limited in its size but also restrictive in that it is shared among 

the threads of a single thread block. With a maximum of 512  threads per block and by 
using one thread to perform Step 3.1 for each interval, we are thus limited to matrices with 

at most 512512  elements. Although such an implementation is very efficient, it defeats 
our goal of an algorithm that can process arbitrary size matrices. An extension of Algorithm 
3 for arbitrary size matrices will therefore be discussed in the next section. For the 
remainder of the section, however, we will restrict ourselves to the simpler case of matrices 

with at most 512  eigenvalues. 

For simplicity, in practice the list L, containing the information about the active intervals, is 
represented by four separate arrays: 

 __shared__ float s_left[MAX_INTERVALS_BLOCK] 

 __shared__ float s_right[MAX_INTERVALS_BLOCK] 
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 __shared__ unsigned int s_left_count[MAX_INTERVALS_BLOCK] 

 __shared__ unsigned int s_right_count[MAX_INTERVALS_BLOCK], 

 

where the left and right interval bounds are stored in s_left and s_right, respectively,  
and s_left_count and s_right_count are used to represent the eigenvalue counts.  

A problem which is specific to a parallel implementation of the bisection algorithm results 
from the data-dependent number of child intervals. In a serial implementation we could 
write the data of the actual child intervals, either one or two, at the end of the four arrays 
and use an index pointer to track where the next data has to be written. However, in a data 
parallel programming model all threads write at the same time. To make sure that no data is 
overwritten, we therefore have to assume that every interval has two children when we write 
the data; the addresses idx_0 and idx_1 have thus to be computed as  

idx_0 = threadIdx.x; 

idx_1 = threadIdx.x + blockDim.x; 

where blockDim.x is the total number of threads in the thread block. This generates a 
sparse list of interval data with unused elements in between. One possible approach would 
be to continue with this sparse list. However, because we do not know which child intervals 
are actually non-empty and were written to the four arrays, we have to use in the next 
iteration of Step 3.1 as many threads as there are possible child intervals, and we would also 
again have to compute the indices for the result data as listed above which would generate a 

full, balanced binary tree. Obviously, even for small matrices with at most 512512  

elements we would easily exceed the available 512  threads before all intervals converged. In 
the implementation, we therefore compact the list of child intervals after Step 3.1 before 
processing nodes on the next level of the interval tree. In the literature this problem is 
known as stream compaction, see for example [9]. The compaction takes as input a binary 
array which is one for all intervals that are non-empty, and zero otherwise. Performing a 
scan of this array yields the indices for the non-empty intervals so that these form a compact 
list, and the intervals are then stored directly to their final location.  

In our implementation, however, we do not scan the whole array of possible child nodes. 
Every interval is guaranteed to have at least one non-empty child interval. If we store at the 
address idx_0 always this non-empty child then no compaction is needed for this part of 
the interval list. In practice, we therefore store the first child interval directly into s_left, 
s_right, s_left_count, and s_right_count using idx_0 and perform the 
compaction only for the second child intervals using a binary list s_compaction_helper. 
After the final addresses have been computed the second child intervals are stored after the 
first ones into the four shared memory arrays. Performing the scan only for the second child 
intervals thereby reduces the costs by half. With the compaction step Algorithm 3 takes the 
form: 

Algorithm 3. 

3.1. Perform in parallel for all intervals  kjkj ul ,, ,  (all at level j ) in the list L. 

3.1.a. Compute  kjkjkj ulm ,,, , . 

3.1.b. Compute  kjmC , . 

3.1.c. For non-empty child intervals determine if they converged. 
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3.1.d. Store non-empty, unconverged child intervals in L. 

3.1.e. Write the binary list s_compaction_helper. 

3.2. Perform scan on s_compaction_helper. 

3.3. Write all non-empty second child intervals to L using the addresses from 
s_compaction_helper. 

Note that we no longer store non-empty, converged child intervals directly in the output list 
but repeat them on subsequent tree levels. In the implementation we therefore keep the data 

of converged intervals in L until Algorithm 3 terminated. This enables coalesced writes when 
the data is stored to global memory. 

The elements of the two vectors representing the input matrix are loaded from global 
memory only during the eigenvalue count computation in Step 3.1.b. Given Algorithm 1 it 
would be possible to load only a single element of each vector at a time, compute one 
iteration of the loop, then load the next element, and so on. This strategy is inefficient 
because the loads are uncoalesced and because for low levels of the interval tree only a small 
number of threads would perform a load. In these cases the memory access latency could 
not be hidden by issuing load instructions for other threads. A better strategy is therefore to 
always load chunks of matrix data into shared memory and then compute some iterations of 
Algorithm 1 using this data. Coalescing the reads from global memory is then 
straightforward and memory latency can be hidden by using not only the active threads to 
load the data from global memory but all threads in the current thread block and using a 
sufficiently large number of threads per block. Loading chunks of data requires temporary 
storage of the information in shared memory. Two additional large arrays would, however, 

exceed the available 16  KB of shared memory. We therefore employ s_left  and 

s_right to store the matrix elements and “cache” the interval bounds during the 
computation of Step 3.1.b in registers. 

Computation of Eigenvalues for Large Matrices 
So far we have described how Algorithm 3 can be implemented efficiently for small matrices 

with up to 512512  elements by using one thread to process each interval and storing all 
active intervals in shared memory. For large matrices, however, there are not enough threads 
in a thread block to always be able to process all intervals simultaneously. It would be 
possible to process blocks of intervals serially. However, NVIDIA compute devices can 
process multiple thread blocks in parallel and we would therefore not exploit the full 

available computing power. Additionally, with significantly more than 512  eigenvalues it 
would no longer be possible to store all active intervals in shared memory. One possible 
alternative would be to not use shared memory but perform all computations directly from 
global memory. Then only minor modifications to Algorithm 3 would be necessary to 
process arbitrary size matrices with multiple thread blocks. However, the high latency of 
global memory and the lack of efficient synchronization between thread blocks make this 
approach inefficient. We therefore followed a different strategy to extend Algorithm 3 for 
arbitrary size matrices.  

Let us consider for a moment what happens if Algorithm 3 is executed with a matrix with 

more than 512512  elements as input. If we assume that no eigenvalues are clustered 

(that is the distance between the eigenvalues is larger than  ) then eventually the number of 
active intervals will exceed the number of available threads. The algorithm will then 
terminate and return a list U of, in general, unconverged intervals that contain one or 
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multiple eigenvalues. Although this is not yet the desired result, we can now determine the 
eigenvalues by continuing the bisection process on each of the intervals in U. The discussion 
in this section will focus on how the list U of intervals is generated – in fact, we will see 
shortly that two lists are generated – and how the intervals can be processed efficiently. 

A naïve approach to process U would be to employ Algorithm 3, as described in the last 
section, but always use as input always one interval from U instead of the Gerschgorin 
interval. This is however inefficient. Most intervals that result from the first step contain far 

less than 512  eigenvalues. The generated interval tree would therefore be very shallow and 
we would never reach high tree levels where the available parallelism could be fully 
exploited. We therefore employ a different approach to process the intervals in U. First, we 
sort the intervals in two lists Uo and Um containing only one and multiple eigenvalues, 
respectively. After Um has been obtained, the intervals are grouped into blocks or batches so 
that none of them contains more than MAX_THREADS_BLOCK eigenvalues. The sorting into 
Uo and Um and the batching are all performed as post-processing step to Algorithm 3. We 
then launch two additional kernels to process the elements in Uo and Um, respectively. Each 
batch of intervals in Um is thereby processed by one thread block guaranteeing that one 
additional kernel launch is sufficient to determine all eigenvalues. Our motivation to perform 
the rather expensive sorting to obtain Uo and Um is two-fold. Firstly, it allows us to employ 
specialized kernels when we process each interval types which greatly improves the 
efficiency, and secondly, it reduces the amount of intermediate data that has to be read back 
to the host to two values; the number of elements in Uo and the number of batches of 
elements of Um. 

Algorithm 4 summarizes the computations for matrices with more than 512512  
elements.  

Algorithm 4. 

4.1. Coarse-grain processing.  

4.1.a. Perform Algorithm 3 and obtain a list U of intervals containing one or 
more eigenvalues. 

4.1.b. Sort U to obtain two lists Uo and Um so that each one contains only 
intervals with one and multiple eigenvalues, respectively. 

4.1.c. Batch Um  into blocks so that none of the blocks contains more than 
MAX_THREADS_BLOCK eigenvalues 

4.2. Process the intervals in Uo to obtain the contained eigenvalues. 

4.3. Process the intervals in Um to obtain the contained eigenvalues by using one 
thread block for each batch. 

Step 4.1, 4.2, and 4.3 each correspond to a separate kernel launch. Step 1.b and Step 1.c are 
performed as a post-processing step of Algorithm 3 in Step 1.a. 

On a data parallel architecture the sorting and blocking (or batching) in Step 4.1.b and Step 
4.1.c are complex operations. These additional computations are nonetheless beneficial 
because they significantly simplify the computations in Step 4.2 and Step 4.3. In particular 
the sorting and batching enable the use of customized – and therefore more efficient – 
variants of Algorithm 3 to process Uo and Um , respectively.  

Algorithm 5 computes the eigenvalues contained in the intervals in Uo. Every interval 
processed in this algorithm, either as input or generated during the computation, contains 
exactly one eigenvalue and has therefore exactly one child interval. This allows us to omit the 
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compaction step employed in Algorithm 3 and makes Algorithm 5 significantly more 
efficient. 

Algorithm 5. 

5.1. Read a set of intervals  kjkj ul ,, ,  of Uo into shared memory. 

5.2. Repeat until all intervals converge. 

5.2.a. Compute  kjkjkj ulm ,,, , . 

5.2.b. Determine  kjmC , . 

5.2.c. Determine if non-empty child intervals converge. 

5.2.d. Store non-empty, unconverged child intervals in L or the original interval if 
it was already converged. 

5.3. Write eigenvalue approximations to global memory. 

To efficiently compute Algorithm 5 the length of Uo is read back to the host and the number 
of thread blocks for Step 4.2 is chosen so that all intervals in Uo can be processed. The block 
id is used by each thread block to read the correct set of intervals from Uo into shared 
memory. Note that each thread block is launched with a large, prescribed number of threads 
even if the length of Uo is small. As in Algorithm 3 this enables to load the input matrix data 
more efficiently into shared memory when the eigenvalue count has to be computed. 

Algorithm 6 is employed to find the eigenvalues for the intervals in Um. 

Algorithm 6. 

6.1. Read one block of intervals from Um into shared memory. 

6.2. Perform in parallel for all jn  active intervals at level j : 

6.2.a. Compute  kjkjkj ulm ,,, , . 

6.2.b. Compute  kjmC , . 

6.2.c. Determine if non-empty child intervals converge. 

6.2.d. Store converged child intervals in an output list O. 

6.2.e. Store non-empty, unconverged child intervals in L. or the original interval 
if it was already converged.  

6.2.f. Perform scan on compaction. 

6.2.g. Write all non-empty second child intervals to L using the addresses from 
compaction. 

6.3. Store eigenvalue approximations in global memory.  

Algorithm 6 resembles Algorithm 3 very closely but takes as input not the Gerschgorin 
interval but a block of intervals. Thus, during processing not a tree but a forest of intervals is 
generated. In practice this is only of secondary interest as Algorithm 3 can be used without 
modifications to process a forest of trees instead of a single tree. The interval blocks that 
form the input to Algorithm 6 are generated so that the maximum number of active intervals 
in Step 6.2 never exceeds the available number of threads or the available shared memory 
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space. All eigenvalues in Um can therefore be found with one kernel launch by having as 
many thread blocks as interval batches. The number of batches is read from the device after 
Step 4.1.c. 

Generating Lists and Blocks of Intervals 

In the following we will describe in more detail how the two lists Uo and Um are generated in 
Step 4.1.b of Algorithm 4, and how Um is subdivided into blocks in Step 4.1.c.  

The input to Step 4.1.b is U which contains the unconverged intervals resulting from Step 
4.1.a. The lists Uo and Um, formed by intervals containing one and multiple eigenvalues, 
respectively, are computed by two compaction operations. The input to both operations is U 
but when Uo is computed all intervals containing multiple eigenvalues are ignored, and when 
Um is computed intervals containing only one eigenvalues are ignored. The difference 
between the two compaction operations is therefore only the subsets of intervals from U 
that are considered and both operations can therefore be performed simultaneously 
significantly reducing the overall costs. The result is two index lists that determine the 
positions of the elements of U in either Uo or Um. To save shared memory resources, we use 
s_left_count and s_right_count as buffers for the compaction operations and 
“cache” the eigenvalue counts in registers. Note that each thread has to cache the 
information for up to two intervals because Step 1.a in Algorithm 5 terminates when the 
number of active intervals exceeds the number of threads in the thread block. After the 
addresses have been computed it would be possible to directly write out the elements of U to 
representations of Uo and Um in global memory. The writes would, however, in general be 
uncoalesced and therefore slow. Shared memory has no coalescing constraints and we can 
thus efficiently generate Uo and Um in shared memory, and then copy the final lists to global 
memory with coalesced writes. Note that separate shared memory arrays for Uo and Um 

would exceed the available 16  KB. We therefore use s_left, s_right, s_left_count, 

and s_right_count to store the two lists sequentially one after the other by offsetting the 
elements of Um by the length of Uo.  

Compaction, as used for generating Uo and Um, is a standard technique in parallel 
programming and our implementation differs from a textbook example only in that we 
perform two compaction operations in parallel. More interesting is the generation of blocks, 
or batches, of intervals so that the number of eigenvalues in each block never exceeds a 
prescribed threshold, in our case MAX_THREADS_BLOCK.  

In general, the batch computation is a special instance of the knapsack problem which is 
known to be NP hard [12]. Finding the optimal solution is thus not practical. We therefore 
seek a greedy algorithm that provides batches of “good” quality so that the average number 
of intervals per block is close to the threshold but which can also be computed efficiently on 
a data parallel architecture. The solution proposed in this report is based on the scan 
algorithm as described by Blelloch [8] and Harris et al. [9]. We employ in particular the up-
sweep of scan that generates a tree to determine the batches. Instead of building one 
complete binary tree containing all intervals, however, we generate a forest of trees so that 
for each tree the total numbers of eigenvalues in the leaf nodes does not exceed the 
prescribed maximum. In contrast to the original scan algorithm, we therefore combine two 

tree nodes kj ,  and 1,  kj only if the new parent node does not contain more than 

MAX_THREADS_BLOCK eigenvalues. If the new node would exceed the threshold, we use an 

auxiliary buffer to mark kj ,  and 1,  kj  as root nodes of blocks. We build the trees by 

always discarding the right child node and replacing the left child with the parent (see Figure 
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 2 for an example) and by storing root nodes in the auxiliary buffer at the same location as in 
the data buffer. In this way, the location of the first interval of a block in Um, which forms 
the start address of the block, can be looked up directly after building the forest. Finally, 
compacting the auxiliary buffer containing the start addresses yields a dense list of blocks B 

that is stored in global memory. In Step 4.3 each thread block reads the block start and end 
address from B and uses these to read the data from Um that has to be processed by the 
block into shared memory (cf. Algorithm 6). Next to the start address we also compute for 
each block the accumulated number of eigenvalues in previous blocks which is needed to 
compactly store all eigenvalues obtained in Step 4.3 in global memory.  

Computing the accumulated sum of eigenvalues requires an additional array in shared 
memory. Together with the auxiliary array that is used to compute the block start addresses 
the required memory would exceed the available shared memory resources. We therefore use 
unsigned short as data type for s_left_count and s_right_count and the two 
auxiliary buffers used to compute the blocks in Step 4.1. This limits us to matrices with not 

less than 6553665536  elements but is sufficient for most applications. If input matrices 

can have more than 65536  eigenvalues then the size of the shared memory arrays can be 
restricted and again unsigned int can be used as data type.  

Figure 2. Example lists generated in Step 4.2 and 4.3 of Algorithm 4. The maximum number 
of eigenvalues allowed per batch is 8. Note that the interval containing one eigenvalue is 
ignored for building Um and the block list.  

 0.7,0.9   

2C  

Uo Um 

 0.5,0.6   

1C  

 5.0,0.1  

3C  

 0.3,0.1  

4C  

 5.5,0.4  

2C  

 0.8,0.7  

3C  

 0.9,2.8  

1C  

 7.9,5.9  

2C  

 3.10,2.10  

3C  

 0.11,5.10  

2C  

 0.7,0.9   

2C  

Ignored 
for blocks 

 0.3,0.1  

7C  

 0.8,0.4  

5C  

 7.9,5.9  

2C  

Ignored 
for blocks 

 0.11,2.10  

5C  

 0.3,0.9  

9C  

Would exceed threshold 

 7.9,0.4  

7C  

 0.5,0.6   

1C  

 0.9,2.8  

1C  

 0.7,0.9   

2C  

 5.0,0.1  

3C  

U 

 0.3,0.1  

4C  

 5.5,0.4  

2C  

 0.8,0.7  

3C  

 7.9,5.9  

2C  

 3.10,2.10  

3C  

 0.11,5.10  

2C  

start = 0 

sum = 0 

start = 1 

sum = 2 

start = 3 

sum = 9 

start = 3 

sum=16 



Eigenvalue Computation using Bisection 

    

 

 

September 2013  17  

As mentioned previously, the proposed algorithm to compute the blocks of Um is  not 
optimal and it is easy to construct pathological cases where it provides very poor results. In 

practice, however, we observed that on average each block contained about %75  of the 
maximum number of eigenvalues. This is sufficient to efficiently perform Step 3.4 of 
Algorithm 4. 
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Future Work 

The implementation proposed in this report can be improved in various ways. For low levels 
of the interval tree it would be beneficial to employ multi-section instead of bisection. This 
would increase the parallelism of the computations more rapidly. 

For small matrices with less than 256  eigenvalues it is possible to store both the active 
intervals and the input matrix in shared memory. The eigenvalue counts in the main loop of 
the algorithm can thus be computed without accessing global memory which will 
significantly improve performance.  

For matrices that have between 512  and 1024  eigenvalues the current implementation can 
be improved by processing multiple intervals with each thread. This permits to directly 
employ Algorithm 3 to compute all eigenvalues and avoids multiple kernel launches. 

There are also several possible improvements for large matrices with more than 1024  
eigenvalues. Currently we require two additional kernel launches after Step 1 of Algorithm 4 
to determine all eigenvalues. It would be possible to subdivide all intervals that contain only 
one eigenvalue to convergence in Step 1 of Algorithm 4. This would allow us to skip Step 2 
and might be beneficial in particular for very large matrices where there are only a feew 
intervals containing one eigenvalue after Step 1.a. At the moment only one thread block is 
used in Step 1 of Algorithm 5. Thus, in this step only a small fraction of the available 
compute power is employed. One approach to better utilize the device during the initial step 
of Algorithm 5 would be to heuristically subdivide the initial Gerschgorin interval – ideally 
the number of intervals should be chosen to match the number of parallel processors on the 
device – and process all these intervals in the first processing step. For real-world problems 
where eigenvalues are typically not well distributed this might result in an unequal load 
balancing. We believe, however, that it will in most cases still outperform the current 
implementation. A more sophisticated approach would find initial intervals on the device so 
that the workload for all multi-processors is approximately equal in Step 1 (cf. [6]). 
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Conclusion 

In this report we presented an efficient algorithm to determine the eigenvalues of a 
symmetric and tridiagonal real matrix using CUDA. A bisection strategy and an efficient 
technique to determine the number of eigenvalues contained in an interval form the 
foundation of the algorithm. The Gerschgorin interval that contains all eigenvalues of a 
matrix is the starting point of the computations and recursive bisection yields a tree of 
intervals whose leaf nodes contain an approximation of the eigenvalues. Two different 
versions of the algorithm have been implemented, one for small matrices with up to 

512512  elements, and one for arbitrary large matrices. Particularly important for the 
efficiency of the implementation is the memory organization which has been discussed in 
detail. Memory consumption and code divergence are minimized by frequent compaction 
operations. For large matrices the implementation requires two steps. Post-processing the 
result of the first step minimizes data transfer to the host and improves the efficiency of the 
second step. 
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Appendix 

Source Code Files 

Host source code files are shown black, device source code files in blue. 

 

main.cu Main file of the program. 

matlab.cpp Store result of the computation in 
Matlab file format. 

gerschgorin.cpp Computation of the Gerschgorin 
interval. 

bisect_small.cu 512512  elements (allocation of 
device code, kernel invocation, 
deallocation of resource, …). 

bisect_large.cu 512512  elements (allocation of 
device code, kernel invocation, 
deallocation of resource, …). 

inc/bisect_large.cuh Header file for bisect_large.cu. 

inc/bisect_small.cuh Header file for bisect_small.cu. 

inc/config.h General parameters (e.g. max. number 
of threads in one thread block). 

inc/gerschgorin.h Header for gerschgorin.cpp. 

inc/matlab.h Header for matlab.cpp. 

inc/structs.h Definition of structures which bundle 
kernel input and output parameter. 

inc/util.h Miscellaneous utility functionality. 

kernel/bisect_kernel_large.cu Kernel implementing Step 4.1.a to 4.1.c. 

kernel/bisect_kernel_large_multi.cu Kernel implementing Algorithm 6. 

kernel/bisect_kernel_large_onei.cu Kernel implementing Algorithm 5. 

kernel/bisect_kernel_small.cu Kernel implementing Algorithm 3. 

kernel/bisect_util.cu Functionality that is required by multiple 
kernels, for example implementation of 
Algorithm 1. 
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Default Behavior 

If the program is run without command line arguments then the diagonal and off-diagonal 

elements of a matrix with 20482048  elements are loaded from the files diagonal.dat 
and superdiagonal.dat in the data directory, respectively. The output of the program 
is 

Matrix size: 2048 x 2048 

Precision: 0.000010 

Iterations timing: 1 

Result filename: 'eigenvalues.dat' 

Gerschgorin interval: -2.894310 / 2.923304 

Average time step 1: 5.263797 ms 

Average time step 2, one intervals: 6.178160 ms 

Average time step 2, mult intervals: 0.061460 ms 

Average time TOTAL: 11.679418 ms 

 

PASSED. 

 

PASSED states that the correct result has been computed. For comparison a reference 
solution was loaded from reference.dat from the data directory. 

Command Line Flags 

filename-result Name of the file where the 
computed eigenvalues are 
stored (only used when also 
matrix-size is user 
defined).  

eigenvalues.dat 

iters-timing Number of iterations used 
to time the different 
kernels.  

100 

precision Desired precision of the 
eigenvalues. 

0.00001 

matrix-size Size of random matrix. 2048 

 

Example: %>eigenvalues --precision=0.001 --matrix-size=4096 
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