/* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include "commonDefs.hpp" #include "commonKernels.hpp" #define VERIFY_GPU_CORRECTNESS 0 size_t maxSampleSizeInMb = 64; int numKernelRuns = 100; int verboseResults = 0; const char *memAllocTypeStr[MEMALLOC_TYPE_COUNT] = { "Managed_Memory_With_Hints", "Managed_Memory_With_Hints_FullyAsync", "Managed_Memory_NoHints", "Zero_Copy", "Memcpy_HostMalloc_DeviceCudaMalloc", "MemcpyAsync_HostMalloc_DeviceCudaMalloc", "Memcpy_HostCudaHostAlloc_DeviceCudaMalloc", "MemcpyAsync_HostCudaHostAlloc_DeviceCudaMalloc"}; const char *memAllocTypeShortStr[MEMALLOC_TYPE_COUNT] = { "UMhint", // Managed Memory With Hints "UMhntAs", // Managed Memory With_Hints Async "UMeasy", // Managed_Memory with No Hints "0Copy", // Zero Copy "MemCopy", // USE HOST PAGEABLE AND DEVICE_MEMORY "CpAsync", // USE HOST PAGEABLE AND DEVICE_MEMORY ASYNC "CpHpglk", // USE HOST PAGELOCKED AND DEVICE MEMORY "CpPglAs" // USE HOST PAGELOCKED AND DEVICE MEMORY ASYNC }; static float RandFloat(float low, float high) { float t = (float)rand() / (float)RAND_MAX; return (1.0f - t) * low + t * high; } void fillMatrixWithRandomValues(float *matrix, unsigned int matrixDim) { unsigned int i, j; for (i = 0; i < matrixDim; ++i) { for (j = 0; j < matrixDim; ++j) { matrix[j + i * matrixDim] = RandFloat(0.0f, 10.0f); } } } #if VERIFY_GPU_CORRECTNESS void verifyMatrixMultiplyCorrectness(float *C, float *A, float *B, unsigned int matrixDim) { unsigned int i, j, k, numErrors = 0; for (i = 0; i < matrixDim; ++i) { for (j = 0; j < matrixDim; ++j) { float result = 0.0f; for (k = 0; k < matrixDim; ++k) { result += A[k + i * matrixDim] * B[j + k * matrixDim]; } if (fabs(C[j + i * matrixDim] - result) > 0.001 * matrixDim) { printf("At [%u, %u]: Expected %f, Found %f\n", i, j, result, C[j + i * matrixDim]); ++numErrors; } } } if (numErrors != 0) { printf("%d value mismatches occured\n", numErrors); fflush(stdout); exit(EXIT_FAILURE); // exit since value mismatches occured } } #endif void copyMatrix(float *dstMatrix, float *srcMatrix, unsigned int matrixDim) { size_t size = matrixDim * matrixDim * sizeof(float); memcpy(dstMatrix, srcMatrix, size); } void verifyMatrixData(float *expectedData, float *observedData, unsigned int matrixDim) { unsigned int i, j, numErrors = 0; for (i = 0; i < matrixDim; ++i) { for (j = 0; j < matrixDim; ++j) { if (expectedData[j + i * matrixDim] != observedData[j + i * matrixDim]) { ++numErrors; if (verboseResults) { printf("At [%u, %u]: Expected %f, Found %f\n", i, j, expectedData[j + i * matrixDim], observedData[j + i * matrixDim]); } } } } if (numErrors != 0) { printf("%d value mismatches occured\n", numErrors); fflush(stdout); exit(EXIT_FAILURE); // exit since value mismatches occured } } #define BLOCK_SIZE 32 __global__ void matrixMultiplyKernel(float *C, float *A, float *B, unsigned int matrixDim) { // Block index int bx = blockIdx.x; int by = blockIdx.y; // Thread index int tx = threadIdx.x; int ty = threadIdx.y; unsigned int wA = matrixDim; unsigned int wB = matrixDim; // Index of the first sub-matrix of A processed by the block int aBegin = matrixDim * BLOCK_SIZE * by; // Index of the last sub-matrix of A processed by the block int aEnd = aBegin + wA - 1; // Step size used to iterate through the sub-matrices of A int aStep = BLOCK_SIZE; // Index of the first sub-matrix of B processed by the block int bBegin = BLOCK_SIZE * bx; // Step size used to iterate through the sub-matrices of B int bStep = BLOCK_SIZE * wB; // Csub is used to store the element of the block sub-matrix // that is computed by the thread float Csub = 0; // Loop over all the sub-matrices of A and B // required to compute the block sub-matrix for (int a = aBegin, b = bBegin; a <= aEnd; a += aStep, b += bStep) { // Declaration of the shared memory array As used to // store the sub-matrix of A __shared__ float As[BLOCK_SIZE][BLOCK_SIZE]; // Declaration of the shared memory array Bs used to // store the sub-matrix of B __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE]; // Load the matrices from device memory // to shared memory; each thread loads // one element of each matrix As[ty][tx] = A[a + wA * ty + tx]; Bs[ty][tx] = B[b + wB * ty + tx]; // Synchronize to make sure the matrices are loaded __syncthreads(); // Multiply the two matrices together; // each thread computes one element // of the block sub-matrix #pragma unroll for (int k = 0; k < BLOCK_SIZE; ++k) { Csub += As[ty][k] * Bs[k][tx]; } // Synchronize to make sure that the preceding // computation is done before loading two new // sub-matrices of A and B in the next iteration __syncthreads(); } // Write the block sub-matrix to device memory; // each thread writes one element int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx; C[c + wB * ty + tx] = Csub; } void runMatrixMultiplyKernel(unsigned int matrixDim, int allocType, unsigned int numLoops, double *gpuLaunchCallsTimes, double *gpuTransferToCallsTimes, double *gpuTransferFromCallsTimes, double *gpuLaunchAndTransferCallsTimes, double *gpuLaunchTransferSyncTimes, double *cpuAccessTimes, double *overallTimes, int device_id) { float *dptrA = NULL, *hptrA = NULL; float *dptrB = NULL, *hptrB = NULL; float *dptrC = NULL, *hptrC = NULL; float *randValuesX = NULL, *randValuesY = NULL; float *randValuesVerifyXmulY = NULL, *randValuesVerifyYmulX = NULL; bool copyRequired = false, hintsRequired = false; bool someTransferOpRequired; bool isAsync = false; cudaStream_t streamToRunOn; unsigned int *latch; size_t size = matrixDim * matrixDim * sizeof(float); dim3 threads(32, 32); dim3 grid(matrixDim / threads.x, matrixDim / threads.y); StopWatchInterface *gpuLaunchCallsTimer = 0, *gpuTransferCallsTimer = 0; StopWatchInterface *gpuSyncTimer = 0, *cpuAccessTimer = 0; sdkCreateTimer(&gpuLaunchCallsTimer); sdkCreateTimer(&gpuTransferCallsTimer); sdkCreateTimer(&gpuSyncTimer); sdkCreateTimer(&cpuAccessTimer); unsigned int i; cudaDeviceProp deviceProp; checkCudaErrors(cudaGetDeviceProperties(&deviceProp, device_id)); checkCudaErrors(cudaStreamCreate(&streamToRunOn)); randValuesX = (float *)malloc(size); if (!randValuesX) { exit(EXIT_FAILURE); // exit since memory allocation error } randValuesY = (float *)malloc(size); if (!randValuesY) { exit(EXIT_FAILURE); // exit since memory allocation error } randValuesVerifyXmulY = (float *)malloc(size); if (!randValuesVerifyXmulY) { exit(EXIT_FAILURE); // exit since memory allocation error } randValuesVerifyYmulX = (float *)malloc(size); if (!randValuesVerifyYmulX) { exit(EXIT_FAILURE); // exit since memory allocation error } checkCudaErrors(cudaMalloc(&dptrA, size)); checkCudaErrors(cudaMalloc(&dptrB, size)); checkCudaErrors(cudaMalloc(&dptrC, size)); fillMatrixWithRandomValues(randValuesX, matrixDim); fillMatrixWithRandomValues(randValuesY, matrixDim); checkCudaErrors( cudaMemcpyAsync(dptrA, randValuesX, size, cudaMemcpyHostToDevice)); checkCudaErrors( cudaMemcpyAsync(dptrB, randValuesY, size, cudaMemcpyHostToDevice)); matrixMultiplyKernel<<>>(dptrC, dptrA, dptrB, matrixDim); checkCudaErrors(cudaMemcpyAsync(randValuesVerifyXmulY, dptrC, size, cudaMemcpyDeviceToHost)); checkCudaErrors(cudaStreamSynchronize(NULL)); matrixMultiplyKernel<<>>(dptrC, dptrB, dptrA, matrixDim); checkCudaErrors(cudaMemcpyAsync(randValuesVerifyYmulX, dptrC, size, cudaMemcpyDeviceToHost)); checkCudaErrors(cudaStreamSynchronize(NULL)); #if VERIFY_GPU_CORRECTNESS verifyMatrixMultiplyCorrectness(randValuesVerifyXmulY, randValuesX, randValuesY, matrixDim); verifyMatrixMultiplyCorrectness(randValuesVerifyYmulX, randValuesY, randValuesX, matrixDim); #endif checkCudaErrors(cudaFree(dptrA)); checkCudaErrors(cudaFree(dptrB)); checkCudaErrors(cudaFree(dptrC)); checkCudaErrors(cudaMallocHost(&latch, sizeof(unsigned int))); switch (allocType) { case USE_HOST_PAGEABLE_AND_DEVICE_MEMORY: case USE_HOST_PAGEABLE_AND_DEVICE_MEMORY_ASYNC: hptrA = (float *)malloc(size); if (!hptrA) { exit(EXIT_FAILURE); // exit since memory allocation error } hptrB = (float *)malloc(size); if (!hptrB) { exit(EXIT_FAILURE); // exit since memory allocation error } hptrC = (float *)malloc(size); if (!hptrC) { exit(EXIT_FAILURE); // exit since memory allocation error } checkCudaErrors(cudaMalloc(&dptrA, size)); checkCudaErrors(cudaMalloc(&dptrB, size)); checkCudaErrors(cudaMalloc(&dptrC, size)); copyRequired = true; break; case USE_HOST_PAGELOCKED_AND_DEVICE_MEMORY: case USE_HOST_PAGELOCKED_AND_DEVICE_MEMORY_ASYNC: checkCudaErrors(cudaMallocHost(&hptrA, size)); checkCudaErrors(cudaMallocHost(&hptrB, size)); checkCudaErrors(cudaMallocHost(&hptrC, size)); checkCudaErrors(cudaMalloc(&dptrA, size)); checkCudaErrors(cudaMalloc(&dptrB, size)); checkCudaErrors(cudaMalloc(&dptrC, size)); copyRequired = true; break; case USE_ZERO_COPY: checkCudaErrors(cudaMallocHost(&hptrA, size)); checkCudaErrors(cudaMallocHost(&hptrB, size)); checkCudaErrors(cudaMallocHost(&hptrC, size)); checkCudaErrors(cudaHostGetDevicePointer(&dptrA, hptrA, 0)); checkCudaErrors(cudaHostGetDevicePointer(&dptrB, hptrB, 0)); checkCudaErrors(cudaHostGetDevicePointer(&dptrC, hptrC, 0)); break; case USE_MANAGED_MEMORY: checkCudaErrors(cudaMallocManaged(&dptrA, size)); checkCudaErrors(cudaMallocManaged(&dptrB, size)); checkCudaErrors(cudaMallocManaged(&dptrC, size)); hptrA = dptrA; hptrB = dptrB; hptrC = dptrC; break; case USE_MANAGED_MEMORY_WITH_HINTS: case USE_MANAGED_MEMORY_WITH_HINTS_ASYNC: if (deviceProp.concurrentManagedAccess) { checkCudaErrors(cudaMallocManaged(&dptrA, size)); checkCudaErrors(cudaMallocManaged(&dptrB, size)); checkCudaErrors(cudaMallocManaged(&dptrC, size)); checkCudaErrors(cudaMemPrefetchAsync(dptrA, size, cudaCpuDeviceId)); checkCudaErrors(cudaMemPrefetchAsync(dptrB, size, cudaCpuDeviceId)); checkCudaErrors(cudaMemPrefetchAsync(dptrC, size, cudaCpuDeviceId)); } else { checkCudaErrors(cudaMallocManaged(&dptrA, size, cudaMemAttachHost)); checkCudaErrors(cudaMallocManaged(&dptrB, size, cudaMemAttachHost)); checkCudaErrors(cudaMallocManaged(&dptrC, size, cudaMemAttachHost)); } hptrA = dptrA; hptrB = dptrB; hptrC = dptrC; hintsRequired = true; break; default: exit(EXIT_FAILURE); // exit with error } if (allocType == USE_HOST_PAGEABLE_AND_DEVICE_MEMORY_ASYNC || allocType == USE_HOST_PAGELOCKED_AND_DEVICE_MEMORY_ASYNC || allocType == USE_MANAGED_MEMORY_WITH_HINTS_ASYNC) { isAsync = true; } someTransferOpRequired = copyRequired || hintsRequired; // fill buffers with 0 to avoid any first access page-fault overheads. memset(hptrA, 0, size); memset(hptrB, 0, size); memset(hptrC, 0, size); for (i = 0; i < numLoops; i++) { cpuAccessTimes[i] = 0.0; gpuLaunchCallsTimes[i] = 0.0; gpuTransferToCallsTimes[i] = 0.0; gpuTransferFromCallsTimes[i] = 0.0; sdkStartTimer(&cpuAccessTimer); { copyMatrix(hptrA, (i & 0x1 == 0) ? randValuesX : randValuesY, matrixDim); copyMatrix(hptrB, (i & 0x1 == 0) ? randValuesY : randValuesX, matrixDim); } sdkStopTimer(&cpuAccessTimer); cpuAccessTimes[i] += sdkGetAverageTimerValue(&cpuAccessTimer); sdkResetTimer(&cpuAccessTimer); if (isAsync && hintsRequired) { *latch = 0; // Prevent any work on stream from starting until all work is pushed spinWhileLessThanOne<<<1, 1, 0, streamToRunOn>>>(latch); } if (someTransferOpRequired) { sdkStartTimer(&gpuTransferCallsTimer); if (copyRequired) { if (isAsync) { checkCudaErrors(cudaMemcpyAsync( dptrA, hptrA, size, cudaMemcpyHostToDevice, streamToRunOn)); checkCudaErrors(cudaMemcpyAsync( dptrB, hptrB, size, cudaMemcpyHostToDevice, streamToRunOn)); } else { checkCudaErrors( cudaMemcpy(dptrA, hptrA, size, cudaMemcpyHostToDevice)); checkCudaErrors( cudaMemcpy(dptrB, hptrB, size, cudaMemcpyHostToDevice)); } } if (hintsRequired) { if (deviceProp.concurrentManagedAccess) { checkCudaErrors( cudaMemPrefetchAsync(dptrA, size, device_id, streamToRunOn)); checkCudaErrors( cudaMemPrefetchAsync(dptrB, size, device_id, streamToRunOn)); checkCudaErrors( cudaMemPrefetchAsync(dptrC, size, device_id, streamToRunOn)); } else { checkCudaErrors(cudaStreamAttachMemAsync(streamToRunOn, dptrA, 0, cudaMemAttachGlobal)); checkCudaErrors(cudaStreamAttachMemAsync(streamToRunOn, dptrB, 0, cudaMemAttachGlobal)); checkCudaErrors(cudaStreamAttachMemAsync(streamToRunOn, dptrC, 0, cudaMemAttachGlobal)); } if (!isAsync) { checkCudaErrors(cudaStreamSynchronize(streamToRunOn)); } } sdkStopTimer(&gpuTransferCallsTimer); gpuTransferToCallsTimes[i] += sdkGetAverageTimerValue(&gpuTransferCallsTimer); sdkResetTimer(&gpuTransferCallsTimer); } sdkStartTimer(&gpuLaunchCallsTimer); { matrixMultiplyKernel<<>>( dptrC, dptrA, dptrB, matrixDim); if (!isAsync) { checkCudaErrors(cudaStreamSynchronize(streamToRunOn)); } } sdkStopTimer(&gpuLaunchCallsTimer); gpuLaunchCallsTimes[i] += sdkGetAverageTimerValue(&gpuLaunchCallsTimer); sdkResetTimer(&gpuLaunchCallsTimer); if (someTransferOpRequired) { sdkStartTimer(&gpuTransferCallsTimer); if (hintsRequired) { if (deviceProp.concurrentManagedAccess) { checkCudaErrors(cudaMemPrefetchAsync(dptrA, size, cudaCpuDeviceId)); checkCudaErrors(cudaMemPrefetchAsync(dptrB, size, cudaCpuDeviceId)); checkCudaErrors(cudaMemPrefetchAsync(dptrC, size, cudaCpuDeviceId)); } else { checkCudaErrors(cudaStreamAttachMemAsync(streamToRunOn, dptrA, 0, cudaMemAttachHost)); checkCudaErrors(cudaStreamAttachMemAsync(streamToRunOn, dptrB, 0, cudaMemAttachHost)); checkCudaErrors(cudaStreamAttachMemAsync(streamToRunOn, dptrC, 0, cudaMemAttachHost)); } if (!isAsync) { checkCudaErrors(cudaStreamSynchronize(streamToRunOn)); } } if (copyRequired) { if (isAsync) { checkCudaErrors(cudaMemcpyAsync( hptrC, dptrC, size, cudaMemcpyDeviceToHost, streamToRunOn)); } else { checkCudaErrors( cudaMemcpy(hptrC, dptrC, size, cudaMemcpyDeviceToHost)); } } sdkStopTimer(&gpuTransferCallsTimer); gpuTransferFromCallsTimes[i] += sdkGetAverageTimerValue(&gpuTransferCallsTimer); sdkResetTimer(&gpuTransferCallsTimer); } gpuLaunchAndTransferCallsTimes[i] = gpuLaunchCallsTimes[i] + gpuTransferToCallsTimes[i] + gpuTransferFromCallsTimes[i]; gpuLaunchTransferSyncTimes[i] = gpuLaunchAndTransferCallsTimes[i]; if (isAsync) { sdkStartTimer(&gpuSyncTimer); { if (hintsRequired) { *latch = 1; } checkCudaErrors(cudaStreamSynchronize(streamToRunOn)); } sdkStopTimer(&gpuSyncTimer); gpuLaunchTransferSyncTimes[i] += sdkGetAverageTimerValue(&gpuSyncTimer); sdkResetTimer(&gpuSyncTimer); } sdkStartTimer(&cpuAccessTimer); { verifyMatrixData( (i & 0x1 == 0) ? randValuesVerifyXmulY : randValuesVerifyYmulX, hptrC, matrixDim); } sdkStopTimer(&cpuAccessTimer); cpuAccessTimes[i] += sdkGetAverageTimerValue(&cpuAccessTimer); sdkResetTimer(&cpuAccessTimer); overallTimes[i] = cpuAccessTimes[i] + gpuLaunchTransferSyncTimes[i]; } switch (allocType) { case USE_HOST_PAGEABLE_AND_DEVICE_MEMORY: case USE_HOST_PAGEABLE_AND_DEVICE_MEMORY_ASYNC: free(hptrA); free(hptrB); free(hptrC); checkCudaErrors(cudaFree(dptrA)); checkCudaErrors(cudaFree(dptrB)); checkCudaErrors(cudaFree(dptrC)); break; case USE_HOST_PAGELOCKED_AND_DEVICE_MEMORY: case USE_HOST_PAGELOCKED_AND_DEVICE_MEMORY_ASYNC: checkCudaErrors(cudaFreeHost(hptrA)); checkCudaErrors(cudaFreeHost(hptrB)); checkCudaErrors(cudaFreeHost(hptrC)); checkCudaErrors(cudaFree(dptrA)); checkCudaErrors(cudaFree(dptrB)); checkCudaErrors(cudaFree(dptrC)); break; case USE_ZERO_COPY: checkCudaErrors(cudaFreeHost(hptrA)); checkCudaErrors(cudaFreeHost(hptrB)); checkCudaErrors(cudaFreeHost(hptrC)); break; case USE_MANAGED_MEMORY: case USE_MANAGED_MEMORY_WITH_HINTS: case USE_MANAGED_MEMORY_WITH_HINTS_ASYNC: checkCudaErrors(cudaFree(dptrA)); checkCudaErrors(cudaFree(dptrB)); checkCudaErrors(cudaFree(dptrC)); break; default: exit(EXIT_FAILURE); // exit due to error } checkCudaErrors(cudaStreamDestroy(streamToRunOn)); checkCudaErrors(cudaFreeHost(latch)); free(randValuesX); free(randValuesY); free(randValuesVerifyXmulY); free(randValuesVerifyYmulX); sdkDeleteTimer(&gpuLaunchCallsTimer); sdkDeleteTimer(&gpuTransferCallsTimer); sdkDeleteTimer(&gpuSyncTimer); sdkDeleteTimer(&cpuAccessTimer); } void matrixMultiplyPerfRunner(bool reportAsBandwidth, bool print_launch_transfer_results, bool print_std_deviation, int device_id) { int i; unsigned int minMatrixDim = 32; unsigned int multiplierDim = 2; unsigned int matrixDim; unsigned int minSize = minMatrixDim * minMatrixDim * sizeof(float); unsigned int maxSize = (maxSampleSizeInMb * ONE_MB) / 4; // 3 buffers are used, but dividing by 4 (power of 2) unsigned int multiplier = multiplierDim * multiplierDim; unsigned int numSizesToTest; struct testResults *results; struct resultsData *gpuLaunchCallsTimes; struct resultsData *gpuTransferToCallsTimes; struct resultsData *gpuTransferFromCallsTimes; struct resultsData *gpuLaunchAndTransferCallsTimes; struct resultsData *gpuLaunchTransferSyncTimes; struct resultsData *cpuAccessTimes; struct resultsData *overallTimes; unsigned long *sizesToTest; unsigned int j; numSizesToTest = findNumSizesToTest(minSize, maxSize, multiplier); createAndInitTestResults(&results, "matrixMultiplyPerf", numKernelRuns, numSizesToTest); sizesToTest = getPtrSizesToTest(results); createResultDataAndAddToTestResults(&gpuLaunchCallsTimes, results, "GPU Kernel Launch Call Time", false, reportAsBandwidth); createResultDataAndAddToTestResults(&gpuTransferToCallsTimes, results, "CPU to GPU Transfer Calls Time", false, reportAsBandwidth); createResultDataAndAddToTestResults(&gpuTransferFromCallsTimes, results, "GPU to CPU Transfer Calls Time", false, reportAsBandwidth); createResultDataAndAddToTestResults(&gpuLaunchAndTransferCallsTimes, results, "GPU Launch and Transfer Calls Time", false, reportAsBandwidth); createResultDataAndAddToTestResults(&gpuLaunchTransferSyncTimes, results, "GPU Launch Transfer and Sync Time", false, reportAsBandwidth); createResultDataAndAddToTestResults( &cpuAccessTimes, results, "CPU Access Time", false, reportAsBandwidth); createResultDataAndAddToTestResults(&overallTimes, results, "Overall Time", false, reportAsBandwidth); printf("Running "); for (matrixDim = minMatrixDim, j = 0; matrixDim * matrixDim <= maxSize / sizeof(float); matrixDim *= multiplierDim, ++j) { sizesToTest[j] = matrixDim * matrixDim * sizeof(float); for (i = MEMALLOC_TYPE_START; i <= MEMALLOC_TYPE_END; i++) { printf("."); fflush(stdout); runMatrixMultiplyKernel( matrixDim, i, numKernelRuns, getPtrRunTimesInMs(gpuLaunchCallsTimes, i, j), getPtrRunTimesInMs(gpuTransferToCallsTimes, i, j), getPtrRunTimesInMs(gpuTransferFromCallsTimes, i, j), getPtrRunTimesInMs(gpuLaunchAndTransferCallsTimes, i, j), getPtrRunTimesInMs(gpuLaunchTransferSyncTimes, i, j), getPtrRunTimesInMs(cpuAccessTimes, i, j), getPtrRunTimesInMs(overallTimes, i, j), device_id); } } printf("\n"); printResults(results, print_launch_transfer_results, print_std_deviation); freeTestResultsAndAllResultsData(results); } static void usage() { printf( "./cudaMemoryTypesPerf [-device=] [-reportAsBandwidth] " "[-print-launch-transfer-results] [-print-std-deviation] [-verbose]\n"); printf("Options:\n"); printf( "-reportAsBandwidth: By default time taken is printed, this " "option allows to instead print bandwidth.\n"); printf( "-print-launch-transfer-results: By default overall results are printed, " "this option allows to print data transfers and kernel time as well.\n"); printf( "-print-std-deviation: Prints std deviation of the results.\n"); printf( "-kernel-iterations=: Number of times the kernel tests should " "be run[default is 100 iterations].\n"); printf( "-device=: Allows to pass GPU Device ID on which " "the tests will be run.\n"); printf("-verbose: Prints highly verbose output.\n"); } int main(int argc, char **argv) { bool reportAsBandwidth = false; bool print_launch_transfer_results = false; bool print_std_deviation = false; if (checkCmdLineFlag(argc, (const char **)argv, "help") || checkCmdLineFlag(argc, (const char **)argv, "h")) { usage(); printf("&&&& %s WAIVED\n", argv[0]); exit(EXIT_WAIVED); } if (checkCmdLineFlag(argc, (const char **)argv, "reportAsBandwidth")) { reportAsBandwidth = true; } if (checkCmdLineFlag(argc, (const char **)argv, "print-launch-transfer-results")) { print_launch_transfer_results = true; } if (checkCmdLineFlag(argc, (const char **)argv, "print-std-deviation")) { print_std_deviation = true; } if (checkCmdLineFlag(argc, (const char **)argv, "kernel-iterations")) { numKernelRuns = getCmdLineArgumentInt(argc, (const char **)argv, "kernel-iterations"); } if (checkCmdLineFlag(argc, (const char **)argv, "verbose")) { verboseResults = 1; } int device_id = findCudaDevice(argc, (const char **)argv); matrixMultiplyPerfRunner(reportAsBandwidth, print_launch_transfer_results, print_std_deviation, device_id); printf( "\nNOTE: The CUDA Samples are not meant for performance measurements. " "Results may vary when GPU Boost is enabled.\n"); exit(EXIT_SUCCESS); }