

December 2013

Monte Carlo
Option Pricing

Victor Podlozhnyuk
vpodlozhnyuk@nvidia.com
Mark Harris
mharris@nvidia.com

mailto:vpodlozhnyuk@nvidia.com
mailto:mharris@nvidia.com

December 2013

Document Change History

Version Date Responsible Reason for Change

1.0 20/03/2007 vpodlozhnyuk Initial release

1.1 21/11/2007 mharris Rewrite with new optimizations and accuracy
discussion

2.0 01/04/2008 vpodlozhnyuk Update the sample generation and the accuracy
discussion sections

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

 Abstract

The pricing of options has been a very important problem encountered in financial
engineering since the advent of organized option trading in 1973. As more computation has
been applied to finance-related problems, finding efficient implementations of option pricing
models on modern architectures has become more important. This white paper describes an
implementation of the Monte Carlo approach to option pricing in CUDA. For complete
implementation details, please see the “MonteCarlo” example in the NVIDIA CUDA SDK.

December 2013

Introduction

The most common definition of an option is an agreement between two parties, the option
seller and the option buyer, whereby the option buyer is granted a right (but not an obligation),
secured by the option seller, to carry out some operation (or exercise the option) at some
moment in the future. [1]

Options come in several varieties: A call option grants its holder the right to buy some
underlying asset (stock, real estate, or any other good with inherent value) at a fixed
predetermined price at some moment in the future. The predetermined price is referred to as
the strike price, and the future date is called the expiration date. Similarly, a put option gives its
holder the right to sell the underlying asset at a strike price on the expiration date.

For a call option, the profit made on the expiration date—assuming a same-day sale
transaction—is the difference between the price of the asset on the expiration date and the
strike price, minus the option price. For a put option, the profit made on the expiration date
is the difference between the strike price and the price of the asset on the expiration date,
minus the option price.

The price of the asset at expiration and the strike price therefore strongly influence how
much one would be willing to pay for an option.

Other factors are:

The time to the expiration date, T: Longer periods imply wider range of possible values
for the underlying asset on the expiration date, and thus more uncertainty about the value of
the option.

The risk-free rate of return, R, which is the annual interest rate of Treasury Bonds or

other “risk-free” investments: any amount P of dollars is guaranteed to be worth
RTeP 

dollars T years from now if placed today in one of theses investments. In other words, if an

asset is worth P dollars T years from now, it is worth
RTeP  today, which must be taken

in account when evaluating the value of the option today.

Exercise restrictions: So far only so-called European options, which can be exercised only
on the expiration date, have been discussed. But options with different types of exercise
restriction also exist. For example, American-style options are more flexible as they may be
exercised at any time up to and including expiration date and as such, they are generally
priced at least as high as corresponding European options.

December 2013

The Monte Carlo Method in Finance

The price of the underlying asset tS follows a geometric Brownian motion with constant

drift and volatility v follows stochastic differential equation: tttt dWSvdtSdS   ,

where tW is the Wiener random process:),0(~0 TNWWX T  (),(2N is normal

distribution with average  and standard deviation )

The solution of this equation is:

)(

0
0WWvT

Tt

t

t
tttt

TeSSdWvdt
S

dS
dWvSdtSdS




 .

Using the Wiener process definition, we can simplify this to:

)1,0(

0

),0(

0

NTvTTvNT

T eSeSS   
 (1)

The expected future value is:

TvTvTTvNT

T eSeeSeEeSSE)5.0(

0

5.0

0

),0(

0

222

)()( 

By definition,
2

0 5.0)(vreSSE rT

T   , so
)1,0()5.0(

0

2 NTvTvr

T eSS  . This is the

possible end stock price depending on the random sample N(0, 1), which one can think of as
“describing” how exactly the stock price moved.

The possible prices of derivatives at the period end are derived from the possible price of
the underlying asset. For example, the price of a call option is

)0,max(),(XSTSV Tcall  . If the market stock price at the exercise date is greater than

the strike price, a call option makes its holder a profit of XST  dollars, and zero

otherwise. Similarly, the price of a put option is)0,max(),(Tput SXTSV  . If the

strike price at the exercise date is greater than the market stock price, a put option makes its

holder a profit of TSX  , and zero otherwise.

One method to mathematically estimate the expectation of),(TSVcall and),(TSVput is

Monte Carlo numeric integration: generate N numeric samples with the required)1,0(N

distribution, corresponding to the underlying Wiener process, then average the possible end-

period stock profits),(TSVi , corresponding to each of the sample values:





N

i

imean TSV
N

TSV
1

),(
1

),((2)

This is the core of the Monte Carlo approach to option pricing.

Discounting the approximate future price by the discount factor
Tre 

we get an

approximation of the present-day fair derivative price:
Tr

meanfair eTSVSV ),()0,(

December 2013

In our chosen example problem, pricing European options, closed-form expressions for

)),((TSVE call and)),((TSVE put are known from the Black-Scholes formula [2, 3]. We

use these closed-form solutions to compute reference values for comparison against our
Monte Carlo integration results. However, the Monte Carlo approach is often applied to
more complex problems, such as pricing American options, for which closed-form
expressions are unknown.

Pseudorandom and Quasirandom
Sequences

The first stage of the computation is the generation of a normally distributed)1,0(N

number sequence, which comes down to uniformly distributed sequence generation. The
“true” Monte Carlo method is based on pseudorandom number sequences, for which most
of the probability theory laws hold, like the Law of Large Numbers and the Central Limit
Theorem. However, to apply the method to numeric integration we only need the samples to
be uniformly distributed over the integration space (without clustering in subvolumes,
“white spots”, etc.). For this purpose specially constructed quasirandom sequences are now
widely used, turning “true” Monte Carlo simulation into Quasi-Monte Carlo integration with
noticeably faster convergence (up to one order of magnitude and above). Moreover, for a
1D problem we can just use an ascending uniformly distributed (0..1) number sequence
without any permutations, as in this case different quasirandom sequences only mean
different order of the samples in the samples array, leaving the a posteriori distribution intact,
i.e. still uniform.

Normally Distributed Sample Generation

2

2

2
2

)(

,
2

1
)(



 






y

eyp is the probability density for),(2N

2
1,0

2

2

1
)(

y

eyp





 is the probability density for)1,0(N








y t

dteyYPyCND 2

2

2

1
)()(


 is the Cumulative Normal Distribution function.

Since)(yCNDz is a strictly ascending function,)1,0(),(1   zzCNDy exists.

Now given a uniform distribution)}1,0(:{ xX as an output from a quasirandom

generator (or just linearly generated as in our implementation), which by definition means

xxXP )(, let’s try to find a mapping)}(:{ xFyXY  , so that).1,0(NY 

December 2013

Because)(1 xCND
 is strictly ascending  )}()({}{ 11 xCNDXCNDxX   ,

xxCNDXCNDP  ))()((11
. By using the)(yCNDx substitution (equivalent to

the)}(:{ 1 xCNDyXY  mapping), the last expression reduces to

)()(yCNDyYP  , which means that Y has the desired distribution. Actually, since no

properties specific to the Normal distribution were used in the calculations above, this is the

general solution for deriving any desired a posteriori distribution out of a)1,0(uniformly

distributed sequence.

Even though there are no known closed-form expressions for the Inverse Cumulative
Normal Distribution Function, there exist several good polynomial approximations, two of
which (Moro or Acklam) are used in our sample.

Unlike many normal distribution generators (e.g. Box-Müller transform), this method doesn’t
demand statistical randomness properties of the underlying uniformly distributed sequence, which is
important for co-operation with quasirandom number sequence generators.

Multiple Blocks Per Option

Once we’ve generated the desired number of)1,0(N samples, we use them to compute an

expected value and confidence width for the underlying option. This is just a matter of
computing Equation (2), which boils down to evaluating equation (1) (often called the payoff
function, endCallValue() in our code) for many integration paths and computing the mean of

the results. For a European call option, the computation code for a)1,0(N single sample (r

) is shown in Listing 1.

Listing 1. Computation of the expected value of a random sample.

There are multiple ways we could go about computing the mean of all of the samples. The
number of options is typically in the hundreds or fewer, so computing one option per thread
will likely not keep the GPU efficiently occupied. Therefore, we will concentrate on using
multiple threads per option. Given that, we have two choices; we can either use one thread
block per option, or multiple thread blocks per option. To begin, we’ll assume we are
computing a very large number (hundreds of thousands) of paths per option. In this case, it
will probably help us hide the latency of reading the random input values if we divide the

__device__ float endCallValue(

 float S,

 float X,

 float r,

 float MuByT,

 float VBySqrtT

){

 float callValue = S * __expf(MuByT + VBySqrtT * r) - X;

 return (callValue > 0) ? callValue : 0;

}

December 2013

work of each option across multiple blocks. As we’ll see later, depending on the number of
underlying options and the number of samples, we may want to choose a different method
to get the highest performance.

Pricing a single European option using Monte Carlo integration is inherently a one-
dimensional problem, but if we are pricing multiple options, we can think of the problem in
two dimensions. We’ll choose to represent paths for an option along the x axis, and options
along the y axis. This makes it easy to determine our grid layout: we’ll launch a grid X blocks
wide by Y blocks tall, where Y is the number of options we are pricing.

We also use the number of options to determine X; we want XY to be large enough to
have plenty of thread blocks to keep the GPU busy. After some experiments on a Tesla
C870 GPU, we determined a simple heuristic that gives good performance in general: if the
number of options is less than 16, we use 64 blocks per option, and otherwise we use 16.
Or, in code:

const int blocksPerOption = (OPT_N < 16) ? 64 : 16;

Listing 2 shows the core computation of the CUDA kernel code for Monte Carlo
integration. Each thread computes and sums the payoff for multiple integration paths and
stores the sum and the sum of squares (which is used in computing the confidence of the
estimate) into a device memory array.

Listing 2. The main loop of the Monte Carlo integration. Each thread
executes this code.

After this kernel executes we have an array of partial sums, d_sumCall, in device memory.
This array has Y rows of T elements each, where T is the number of threads per option,
which depends on the number of threads we launch per block. In our experiments the best
performance was achieved with blocks of 256 threads. To compute the expected price and
confidence width for each option, we need to sum all T values per option. To do so, we
must launch a second kernel which uses a parallel reduction to compute the sums.

A parallel reduction is a tree-based summation of values which takes log(n) parallel steps to
sum n values. Parallel reduction is an efficient way to combine values on a data-parallel
processor like a GPU. For more information on parallel reductions, please see the
“reduction” example in the CUDA SDK. In this example, the reduction is performed by
launching the kernel MonteCarloReduce().

const int iSum = blockIdx.x * blockDim.x + threadIdx.x;

const int accumN = blockDim.x * gridDim.x;

//Cycle through the entire random paths array:

//derive end stock price for each path

TOptionValue sumCall = {0, 0};

for(int i = iSum; i < pathN; i += accumN){

 float r = d_Samples[i];

 float callValue = endCallValue(S, X, r, MuByT, VBySqrtT);

 sumCall.Expected += callValue;

 sumCall.Confidence += callValue * callValue;

}

//accumulate into intermediate global memory array

d_SumCall[optionIndex * accumN + iSum] = sumCall;

December 2013

After this first implementation, we evaluated performance, and found that performance was
very good for large numbers of paths. On a Tesla C870 GPU we were able to reach a rate of
almost 400 options per second with 32 million paths per option. However, such large path
numbers are not often used in the real world of computational finance. For a more realistic
path counts of 256 thousand paths, performance was not as good. While we could achieve
over 36,000 options per second, in terms of the number of paths per second that is
significantly slower. This is made clear Figure 1, in which performance obviously decreases
as the number of paths decreases. Note that above one million paths, the plot is roughly
horizontal. In an ideal implementation the entire graph should be horizontal—the GPU
should be able to sustain that computation rate if we can reduce the overhead for small path
counts.

Monte Carlo Paths Per Second (multiple blocks per option)

1.0000E+08

1.0000E+09

1.0000E+10

1.0000E+11

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

1.
7E

+0
7

3.
4E

+0
7

Paths

P
a
th

s
 P

e
r

S
e
c
o

n
d

64 Underlying Options

128

256

Figure 1. This plot shows paths per second achieved on a Tesla
C870 GPU using multiple thread blocks to price each option. Notice
that performance decreases as the number of paths decreases.

One Block Per Option

When the number of paths is large, each thread has many payoffs to evaluate. By doing a lot
of computation per thread, we are able to amortize overhead such as the cost of kernel
launches and stores to device memory. But when the number of paths is small, launch and
store costs become a more substantial portion of the total computation time. Currently in
order to do the final summation of each option’s path values, we must store intermediate
results to global memory, finish the first kernel, and then launch the parallel reduction kernel

December 2013

to compute the final sum. The second kernel launch is necessary because there is no way for
thread blocks to synchronize and share their results.

To optimize this, we can treat smaller path counts differently, and compute their values
using a single thread block per option. To do this, each thread can store its sum to shared
memory instead of global memory, and the parallel reduction can be performed in shared
memory. This saves a global store per thread and an extra kernel invocation, and results in
big performance improvements for smaller path counts. The main computational loops of
the new Monte Carlo kernel are shown in Listing 3. Notice that there is a new outer loop
which modifies the index iSum. This loop allows each thread to compute multiple partial

sums and store them in the shared memory arrays s_SumCall and s_Sum2Call. By
performing a larger parallel reduction (i.e. more leaves in the tree), we improve accuracy, as
discussed in the Section “Accurate Summation”.

Listing 3. This modified Monte Carlo code computes all paths for an
option wthin a single thread block. This is more efficient for smaller
path counts.

Combining Both Implementations

Now we have two Monte Carlo option pricing implementations; one is optimized for large
path counts, and the other for small path counts. To get best performance across all path
counts, we need to be able to choose between them. By comparing the performance of the
two implementations across a range of option and path counts, we found that the break-
even point is related to the ratio of the number of paths per option to the number of
options. On a Tesla C870 GPU, we determined that performance is generally higher with

// Cycle through the entire random paths array: derive end

// stock price for each path and accumulate partial integrals

// into intermediate shared memory buffer

for(int iSum = threadIdx.x; iSum < SUM_N; iSum += blockDim.x){

 TOptionValue sumCall = {0, 0};

 for(int i = iSum; i < pathN; i += SUM_N){

 float r = d_Samples[i];

 float callValue = endCallValue(S, X, r, MuByT, VBySqrtT);

 sumCall.Expected += callValue;

 sumCall.Confidence += callValue * callValue;

 }

 s_SumCall[iSum] = sumCall.Expected;

 s_Sum2Call[iSum] = sumCall.Confidence;

}

//Reduce shared memory accumulators

//and write final result to global memory

sumReduce<SUM_N>(s_SumCall, s_Sum2Call);

if(threadIdx.x == 0){

 TOptionValue sumCall = {s_SumCall[0], s_Sum2Call[0]};

 d_ResultCall[optionIndex] = sumCall;

}

December 2013

multiple blocks per option when # paths / # options >= 8192. The condition we use in the
code is the following.

const int doMultiBlock = (PATH_N / OPT_N) >= 8192;

By choosing between these two implementations using the above criterion, we are able to
achieve much more consistent throughput, as shown in Figure 2. While the perfomance still
tails off a bit for very small path counts, overall it is much more consistent, largely staying
above 10 billion paths per second.

Monte Carlo Paths Per Second (After Optimization)

1.0000E+08

1.0000E+09

1.0000E+10

1.0000E+11

40
96

81
92

16
38

4

32
76

8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

20
97

15
2

41
94

30
4

83
88

60
8

1.
7E

+0
7

3.
4E

+0
7

Paths

P
a
th

s
 P

e
r

S
e
c
o

n
d

64 Underlying Options

128

256

Figure 2. By using a single thread block per option when the ratio of
paths to options is small, we reduce overhead and achieve a more
constant paths per second rate (compare to Figure 1).

Accurate Summation

Floating point summation is an extremely important and common computation for a wide
variety of numerical applications. As a result, there is a large body of literature on the
analysis of accuracy of many summation algorithms [6, 7]. The most common sequential
approach, often called recursive summation, in which values are added sequentially, can lead to a
large amount of round-off error. Intuitively, as the magnitude of the sum gets very large
relative to the summands, the amount of round-off error increases. This can lead to
catastrophic errors. By reordering the summation (i.e. sorting in order of increasing
magnitude) error can be reduced, but this doesn’t help if all of the input values have similar
values (which may be the case in Monte Carlo option pricing).

December 2013

Instead of adding all the values into a single sum, we can maintain multiple partial sums. If
we add the same number of values into each partial sum, and the input values are similar in
magnitude, the partial sums will likewise all have similar magnitude, so that when they are
added together, the round-off error will be reduced. If we extend this idea, we get pair-wise
summation [6], which results in a summation tree just like the one we use in our parallel
reduction. Thus, not only is parallel reduction efficient on GPUs, but it can improve
accuracy!

In practice, we found that by increasing the number of leaf nodes in our parallel reduction,
we can significantly improve the accuracy of summation (as measured by the relative
difference between single-precision GPU Monte Carlo implementation results and their
CPU double-precision counterpart). Specifically, the relative difference improved by an
order of magnitude from 7.6e-7 to 6e-8 after increasing the size of the shared memory
reduction array s_SumCall from 128 to 1024 elements. The “MonteCarlo” SDK sample
however does not do this by default, because, as shown in the “Accuracy Measurements”
section, for real-world sample point counts of 1M and below this “pure” reduction accuracy
improvement is negligible compared to the relative difference from Black-Scholes results (i.e.
lower by one to two orders of magnitude), and at the same time it introduces observable
performance overhead (about 5%). This additional accuracy may, however, be important in
some applications, so we provide it as an option in the code. The size of the reduction array
in the code can be modified using the SUM_N parameter to sumReduce().

Accuracy measurements

Sample count 65k 128k 256k 512k 1M 2M 4M 8M 16M

GPU 1.1E-5 5.9E-6 3.2E-6 1.7E-6 9.5E-7 5.3E-7 3.2E-7 2.0E-7 1.9E-7

CPU 1.1E-5 5.8E-6 3.1E-6 1.6E-6 8.6E-7 4.5E-7 2.4E-7 1.1E-7 2.9E-8

Table 1. Relative difference of GPU (single-precision) and CPU (double-precision) Monte Carlo
results to Black-Scholes formula

Monte Carlo on Multiple GPUs

Monte Carlo option pricing is “embarrassingly parallel”, because the pricing of each option
is independent of all others. Therefore the computation can be distributed across multiple
CUDA-capable GPUs present in the system. Monte Carlo pricing of European options with
multi-GPU support is demonstrated in the “MonteCarloMultiGPU” example in the CUDA
SDK. This example shares most of its CUDA code with the “MonteCarlo” example. To
provide parallelism across multiple GPUs, the set of input options is divided into contiguous
subsets (the number of subsets equals the number of CUDA-capable GPUs installed in the
system), which are then passed to host threads driving individual GPU CUDA contexts.
CUDA API state is encapsulated inside a CUDA context, so there is always a one-to-one
correspondence between host threads and CUDA contexts.

December 2013

Conclusion

This white paper and the “MonteCarlo” code sample in the NVIDIA SDK demonstrate that
CUDA-enabled GPUs are capable of efficient and accurate Monte Carlo options pricing
even for small path counts. We have shown how using performance analysis across a wide
variety of problem sizes can point the way to important code optimizations. We have also
demonstrated how performing more of the summation using parallel reduction and less
using sequential summation in each thread can improve accuracy.

December 2013

Bibliography

1. Lai, Yongzeng and Jerome Spanier. “Applications of Monte Carlo/Quasi-Monte Carlo
Methods in Finance: Option Pricing”, http://citeseer.ist.psu.edu/264429.html

2. Black, Fischer and Myron Scholes. "The Pricing of Options and Corporate Liabilities".
Journal of Political Economy Vol. 81, No. 3 (1973), pp. 637-654.

3. Craig Kolb, Matt Pharr. “Option pricing on the GPU”. GPU Gems 2. (2005) Chapter 45.

4. Matsumoto, M. and T. Nishimura, "Mersenne Twister: A 623-dimensionally
equidistributed uniform pseudorandom number generator", ACM Transactions on
Modeling and Computer Simulation Vol. 8, No. 1 (1998), pp. 3-30.

5. Box, G. E. P. and Mervin E. Müller, “A Note on the Generation of Random Normal
Deviates”, The Annals of Mathematical Statistics, Vol. 29, No. 2 (1958), pp. 610-611

6. Linz, Peter. “Accurate Floating-Point Summation”. Communications of the ACM, 13
(1970), pp. 361-362.

7. Higham, Nicholas J. “The accuracy of floating point summation”. SIAM Journal on
Scientific Computing, Vol. 14, No. 4 (1993), pp. 783-799.

http://citeseer.ist.psu.edu/264429.html

December 2013

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or
registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2007-2013 NVIDIA Corporation. All rights reserved.

