/* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This sample demonstrates stream ordered memory allocation on a GPU using * cudaMallocAsync and cudaMemPool family of APIs. * * basicStreamOrderedAllocation(): demonstrates stream ordered allocation using * cudaMallocAsync/cudaFreeAsync APIs with default settings. * * streamOrderedAllocationPostSync(): demonstrates if there's a synchronization * in between allocations, then setting the release threshold on the pool will * make sure the synchronize will not free memory back to the OS. */ // System includes #include #include #include // CUDA runtime #include // helper functions and utilities to work with CUDA #include #include #define MAX_ITER 20 /* Add two vectors on the GPU */ __global__ void vectorAddGPU(const float *a, const float *b, float *c, int N) { int idx = blockIdx.x * blockDim.x + threadIdx.x; if (idx < N) { c[idx] = a[idx] + b[idx]; } } int basicStreamOrderedAllocation(const int dev, const int nelem, const float *a, const float *b, float *c) { float *d_a, *d_b, *d_c; // Device buffers float errorNorm, refNorm, ref, diff; size_t bytes = nelem * sizeof(float); cudaStream_t stream; printf("Starting basicStreamOrderedAllocation()\n"); checkCudaErrors(cudaSetDevice(dev)); checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking)); checkCudaErrors(cudaMallocAsync(&d_a, bytes, stream)); checkCudaErrors(cudaMallocAsync(&d_b, bytes, stream)); checkCudaErrors(cudaMallocAsync(&d_c, bytes, stream)); checkCudaErrors( cudaMemcpyAsync(d_a, a, bytes, cudaMemcpyHostToDevice, stream)); checkCudaErrors( cudaMemcpyAsync(d_b, b, bytes, cudaMemcpyHostToDevice, stream)); dim3 block(256); dim3 grid((unsigned int)ceil(nelem / (float)block.x)); vectorAddGPU<<>>(d_a, d_b, d_c, nelem); checkCudaErrors(cudaFreeAsync(d_a, stream)); checkCudaErrors(cudaFreeAsync(d_b, stream)); checkCudaErrors( cudaMemcpyAsync(c, d_c, bytes, cudaMemcpyDeviceToHost, stream)); checkCudaErrors(cudaFreeAsync(d_c, stream)); checkCudaErrors(cudaStreamSynchronize(stream)); /* Compare the results */ printf("> Checking the results from vectorAddGPU() ...\n"); errorNorm = 0.f; refNorm = 0.f; for (int n = 0; n < nelem; n++) { ref = a[n] + b[n]; diff = c[n] - ref; errorNorm += diff * diff; refNorm += ref * ref; } errorNorm = (float)sqrt((double)errorNorm); refNorm = (float)sqrt((double)refNorm); if (errorNorm / refNorm < 1.e-6f) printf("basicStreamOrderedAllocation PASSED\n"); checkCudaErrors(cudaStreamDestroy(stream)); return errorNorm / refNorm < 1.e-6f ? EXIT_SUCCESS : EXIT_FAILURE; } // streamOrderedAllocationPostSync(): demonstrates If the application wants the // memory to persist in the pool beyond synchronization, then it sets the // release threshold on the pool. This way, when the application reaches the // "steady state", it is no longer allocating/freeing memory from the OS. int streamOrderedAllocationPostSync(const int dev, const int nelem, const float *a, const float *b, float *c) { float *d_a, *d_b, *d_c; // Device buffers float errorNorm, refNorm, ref, diff; size_t bytes = nelem * sizeof(float); cudaStream_t stream; cudaMemPool_t memPool; cudaEvent_t start, end; printf("Starting streamOrderedAllocationPostSync()\n"); checkCudaErrors(cudaSetDevice(dev)); checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking)); checkCudaErrors(cudaEventCreate(&start)); checkCudaErrors(cudaEventCreate(&end)); checkCudaErrors(cudaDeviceGetDefaultMemPool(&memPool, dev)); uint64_t thresholdVal = ULONG_MAX; // set high release threshold on the default pool so that cudaFreeAsync will // not actually release memory to the system. By default, the release // threshold for a memory pool is set to zero. This implies that the CUDA // driver is allowed to release a memory chunk back to the system as long as // it does not contain any active suballocations. checkCudaErrors(cudaMemPoolSetAttribute( memPool, cudaMemPoolAttrReleaseThreshold, (void *)&thresholdVal)); // Record the start event checkCudaErrors(cudaEventRecord(start, stream)); for (int i = 0; i < MAX_ITER; i++) { checkCudaErrors(cudaMallocAsync(&d_a, bytes, stream)); checkCudaErrors(cudaMallocAsync(&d_b, bytes, stream)); checkCudaErrors(cudaMallocAsync(&d_c, bytes, stream)); checkCudaErrors( cudaMemcpyAsync(d_a, a, bytes, cudaMemcpyHostToDevice, stream)); checkCudaErrors( cudaMemcpyAsync(d_b, b, bytes, cudaMemcpyHostToDevice, stream)); dim3 block(256); dim3 grid((unsigned int)ceil(nelem / (float)block.x)); vectorAddGPU<<>>(d_a, d_b, d_c, nelem); checkCudaErrors(cudaFreeAsync(d_a, stream)); checkCudaErrors(cudaFreeAsync(d_b, stream)); checkCudaErrors( cudaMemcpyAsync(c, d_c, bytes, cudaMemcpyDeviceToHost, stream)); checkCudaErrors(cudaFreeAsync(d_c, stream)); checkCudaErrors(cudaStreamSynchronize(stream)); } checkCudaErrors(cudaEventRecord(end, stream)); // Wait for the end event to complete checkCudaErrors(cudaEventSynchronize(end)); float msecTotal = 0.0f; checkCudaErrors(cudaEventElapsedTime(&msecTotal, start, end)); printf("Total elapsed time = %f ms over %d iterations\n", msecTotal, MAX_ITER); /* Compare the results */ printf("> Checking the results from vectorAddGPU() ...\n"); errorNorm = 0.f; refNorm = 0.f; for (int n = 0; n < nelem; n++) { ref = a[n] + b[n]; diff = c[n] - ref; errorNorm += diff * diff; refNorm += ref * ref; } errorNorm = (float)sqrt((double)errorNorm); refNorm = (float)sqrt((double)refNorm); if (errorNorm / refNorm < 1.e-6f) printf("streamOrderedAllocationPostSync PASSED\n"); checkCudaErrors(cudaStreamDestroy(stream)); return errorNorm / refNorm < 1.e-6f ? EXIT_SUCCESS : EXIT_FAILURE; } int main(int argc, char **argv) { int nelem; int dev = 0; // use default device 0 size_t bytes; float *a, *b, *c; // Host if (checkCmdLineFlag(argc, (const char **)argv, "help")) { printf("Usage: streamOrderedAllocation [OPTION]\n\n"); printf("Options:\n"); printf(" --device=[device #] Specify the device to be used\n"); return EXIT_SUCCESS; } dev = findCudaDevice(argc, (const char **)argv); int isMemPoolSupported = 0; checkCudaErrors(cudaDeviceGetAttribute(&isMemPoolSupported, cudaDevAttrMemoryPoolsSupported, dev)); if (!isMemPoolSupported) { printf("Waiving execution as device does not support Memory Pools\n"); exit(EXIT_WAIVED); } // Allocate CPU memory. nelem = 1048576; bytes = nelem * sizeof(float); a = (float *)malloc(bytes); b = (float *)malloc(bytes); c = (float *)malloc(bytes); /* Initialize the vectors. */ for (int n = 0; n < nelem; n++) { a[n] = rand() / (float)RAND_MAX; b[n] = rand() / (float)RAND_MAX; } int ret1 = basicStreamOrderedAllocation(dev, nelem, a, b, c); int ret2 = streamOrderedAllocationPostSync(dev, nelem, a, b, c); /* Memory clean up */ free(a); free(b); free(c); return ((ret1 == EXIT_SUCCESS && ret2 == EXIT_SUCCESS) ? EXIT_SUCCESS : EXIT_FAILURE); }