/* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // Includes, system #include // Includes CUDA #include #include #include // Utilities and timing functions #include // includes cuda.h and cuda_runtime_api.h // CUDA helper functions #include // helper functions for CUDA error check namespace cg = cooperative_groups; #if __CUDA_ARCH__ >= 700 template __device__ void reduceBlockData( cuda::barrier &barrier, cg::thread_block_tile<32> &tile32, double &threadSum, double *result) { extern __shared__ double tmp[]; #pragma unroll for (int offset = tile32.size() / 2; offset > 0; offset /= 2) { threadSum += tile32.shfl_down(threadSum, offset); } if (tile32.thread_rank() == 0) { tmp[tile32.meta_group_rank()] = threadSum; } auto token = barrier.arrive(); barrier.wait(std::move(token)); // The warp 0 will perform last round of reduction if (tile32.meta_group_rank() == 0) { double beta = tile32.thread_rank() < tile32.meta_group_size() ? tmp[tile32.thread_rank()] : 0.0; #pragma unroll for (int offset = tile32.size() / 2; offset > 0; offset /= 2) { beta += tile32.shfl_down(beta, offset); } if (tile32.thread_rank() == 0) { if (writeSquareRoot) *result = sqrt(beta); else *result = beta; } } } #endif __global__ void normVecByDotProductAWBarrier(float *vecA, float *vecB, double *partialResults, int size) { #if __CUDA_ARCH__ >= 700 #pragma diag_suppress static_var_with_dynamic_init cg::thread_block cta = cg::this_thread_block(); cg::grid_group grid = cg::this_grid(); ; cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta); __shared__ cuda::barrier barrier; if (threadIdx.x == 0) { init(&barrier, blockDim.x); } cg::sync(cta); double threadSum = 0.0; for (int i = grid.thread_rank(); i < size; i += grid.size()) { threadSum += (double)(vecA[i] * vecB[i]); } // Each thread block performs reduction of partial dotProducts and writes to // global mem. reduceBlockData(barrier, tile32, threadSum, &partialResults[blockIdx.x]); cg::sync(grid); // One block performs the final summation of partial dot products // of all the thread blocks and writes the sqrt of final dot product. if (blockIdx.x == 0) { threadSum = 0.0; for (int i = cta.thread_rank(); i < gridDim.x; i += cta.size()) { threadSum += partialResults[i]; } reduceBlockData(barrier, tile32, threadSum, &partialResults[0]); } cg::sync(grid); const double finalValue = partialResults[0]; // Perform normalization of vecA & vecB. for (int i = grid.thread_rank(); i < size; i += grid.size()) { vecA[i] = (float)vecA[i] / finalValue; vecB[i] = (float)vecB[i] / finalValue; } #endif } int runNormVecByDotProductAWBarrier(int argc, char **argv, int deviceId); //////////////////////////////////////////////////////////////////////////////// // Program main //////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { printf("%s starting...\n", argv[0]); // This will pick the best possible CUDA capable device int dev = findCudaDevice(argc, (const char **)argv); int major = 0; checkCudaErrors( cudaDeviceGetAttribute(&major, cudaDevAttrComputeCapabilityMajor, dev)); // Arrive-Wait Barrier require a GPU of Volta (SM7X) architecture or higher. if (major < 7) { printf("simpleAWBarrier requires SM 7.0 or higher. Exiting...\n"); exit(EXIT_WAIVED); } int supportsCooperativeLaunch = 0; checkCudaErrors(cudaDeviceGetAttribute(&supportsCooperativeLaunch, cudaDevAttrCooperativeLaunch, dev)); if (!supportsCooperativeLaunch) { printf( "\nSelected GPU (%d) does not support Cooperative Kernel Launch, " "Waiving the run\n", dev); exit(EXIT_WAIVED); } int testResult = runNormVecByDotProductAWBarrier(argc, argv, dev); printf("%s completed, returned %s\n", argv[0], testResult ? "OK" : "ERROR!"); exit(testResult ? EXIT_SUCCESS : EXIT_FAILURE); } int runNormVecByDotProductAWBarrier(int argc, char **argv, int deviceId) { float *vecA, *d_vecA; float *vecB, *d_vecB; double *d_partialResults; int size = 10000000; checkCudaErrors(cudaMallocHost(&vecA, sizeof(float) * size)); checkCudaErrors(cudaMallocHost(&vecB, sizeof(float) * size)); checkCudaErrors(cudaMalloc(&d_vecA, sizeof(float) * size)); checkCudaErrors(cudaMalloc(&d_vecB, sizeof(float) * size)); float baseVal = 2.0; for (int i = 0; i < size; i++) { vecA[i] = vecB[i] = baseVal; } cudaStream_t stream; checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking)); checkCudaErrors(cudaMemcpyAsync(d_vecA, vecA, sizeof(float) * size, cudaMemcpyHostToDevice, stream)); checkCudaErrors(cudaMemcpyAsync(d_vecB, vecB, sizeof(float) * size, cudaMemcpyHostToDevice, stream)); // Kernel configuration, where a one-dimensional // grid and one-dimensional blocks are configured. int minGridSize = 0, blockSize = 0; checkCudaErrors(cudaOccupancyMaxPotentialBlockSize( &minGridSize, &blockSize, (void *)normVecByDotProductAWBarrier, 0, size)); int smemSize = ((blockSize / 32) + 1) * sizeof(double); int numBlocksPerSm = 0; checkCudaErrors(cudaOccupancyMaxActiveBlocksPerMultiprocessor( &numBlocksPerSm, normVecByDotProductAWBarrier, blockSize, smemSize)); int multiProcessorCount = 0; checkCudaErrors(cudaDeviceGetAttribute( &multiProcessorCount, cudaDevAttrMultiProcessorCount, deviceId)); minGridSize = multiProcessorCount * numBlocksPerSm; checkCudaErrors(cudaMalloc(&d_partialResults, minGridSize * sizeof(double))); printf( "Launching normVecByDotProductAWBarrier kernel with numBlocks = %d " "blockSize = %d\n", minGridSize, blockSize); dim3 dimGrid(minGridSize, 1, 1), dimBlock(blockSize, 1, 1); void *kernelArgs[] = {(void *)&d_vecA, (void *)&d_vecB, (void *)&d_partialResults, (void *)&size}; checkCudaErrors( cudaLaunchCooperativeKernel((void *)normVecByDotProductAWBarrier, dimGrid, dimBlock, kernelArgs, smemSize, stream)); checkCudaErrors(cudaMemcpyAsync(vecA, d_vecA, sizeof(float) * size, cudaMemcpyDeviceToHost, stream)); checkCudaErrors(cudaStreamSynchronize(stream)); float expectedResult = (baseVal / sqrt(size * baseVal * baseVal)); unsigned int matches = 0; for (int i = 0; i < size; i++) { if ((vecA[i] - expectedResult) > 0.00001) { printf("mismatch at i = %d\n", i); break; } else { matches++; } } printf("Result = %s\n", matches == size ? "PASSED" : "FAILED"); checkCudaErrors(cudaFree(d_vecA)); checkCudaErrors(cudaFree(d_vecB)); checkCudaErrors(cudaFree(d_partialResults)); checkCudaErrors(cudaFreeHost(vecA)); checkCudaErrors(cudaFreeHost(vecB)); return matches == size; }