/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* This sample is a templatized version of the template project. * It also shows how to correctly templatize dynamically allocated shared * memory arrays. * Host code. */ // System includes #include #include #include #include // CUDA runtime #include // helper functions and utilities to work with CUDA #include #include #ifndef MAX #define MAX(a, b) (a > b ? a : b) #endif int g_TotalFailures = 0; //////////////////////////////////////////////////////////////////////////////// // declaration, forward template void runTest(int argc, char **argv, int len); template void computeGold(T *reference, T *idata, const unsigned int len) { const T T_len = static_cast(len); for (unsigned int i = 0; i < len; ++i) { reference[i] = idata[i] * T_len; } } //////////////////////////////////////////////////////////////////////////////// // Program main //////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { printf("> runTest\n"); runTest(argc, argv, 32); printf("> runTest\n"); runTest(argc, argv, 64); printf("\n[simpleTemplates_nvrtc] -> Test Results: %d Failures\n", g_TotalFailures); exit(g_TotalFailures == 0 ? EXIT_SUCCESS : EXIT_FAILURE); } // To completely templatize runTest (below) with cutil, we need to use // template specialization to wrap up CUTIL's array comparison and file writing // functions for different types. // Here's the generic wrapper for cutCompare* template class ArrayComparator { public: bool compare(const T *reference, T *data, unsigned int len) { fprintf(stderr, "Error: no comparison function implemented for this type\n"); return false; } }; // Here's the specialization for ints: template <> class ArrayComparator { public: bool compare(const int *reference, int *data, unsigned int len) { return compareData(reference, data, len, 0.15f, 0.0f); } }; // Here's the specialization for floats: template <> class ArrayComparator { public: bool compare(const float *reference, float *data, unsigned int len) { return compareData(reference, data, len, 0.15f, 0.15f); } }; // Here's the generic wrapper for cutWriteFile* template class ArrayFileWriter { public: bool write(const char *filename, T *data, unsigned int len, float epsilon) { fprintf(stderr, "Error: no file write function implemented for this type\n"); return false; } }; // Here's the specialization for ints: template <> class ArrayFileWriter { public: bool write(const char *filename, int *data, unsigned int len, float epsilon) { return sdkWriteFile(filename, data, len, epsilon, false); } }; // Here's the specialization for floats: template <> class ArrayFileWriter { public: bool write(const char *filename, float *data, unsigned int len, float epsilon) { return sdkWriteFile(filename, data, len, epsilon, false); } }; template CUfunction getKernel(CUmodule in); template <> CUfunction getKernel(CUmodule in) { CUfunction kernel_addr; checkCudaErrors(cuModuleGetFunction(&kernel_addr, in, "testInt")); return kernel_addr; } template <> CUfunction getKernel(CUmodule in) { CUfunction kernel_addr; checkCudaErrors(cuModuleGetFunction(&kernel_addr, in, "testFloat")); return kernel_addr; } //////////////////////////////////////////////////////////////////////////////// //! Run a simple test for CUDA //////////////////////////////////////////////////////////////////////////////// static bool moduleLoaded = false; CUmodule module; char *cubin, *kernel_file; size_t cubinSize; template void runTest(int argc, char **argv, int len) { if (!moduleLoaded) { kernel_file = sdkFindFilePath("simpleTemplates_kernel.cu", argv[0]); compileFileToCUBIN(kernel_file, argc, argv, &cubin, &cubinSize, 0); module = loadCUBIN(cubin, argc, argv); moduleLoaded = true; } // create and start timer StopWatchInterface *timer = NULL; sdkCreateTimer(&timer); // start the timer sdkStartTimer(&timer); unsigned int num_threads = len; unsigned int mem_size = sizeof(float) * num_threads; // allocate host memory T *h_idata = (T *)malloc(mem_size); // initialize the memory for (unsigned int i = 0; i < num_threads; ++i) { h_idata[i] = (T)i; } // allocate device memory CUdeviceptr d_idata; checkCudaErrors(cuMemAlloc(&d_idata, mem_size)); // copy host memory to device checkCudaErrors(cuMemcpyHtoD(d_idata, h_idata, mem_size)); // allocate device memory for result CUdeviceptr d_odata; checkCudaErrors(cuMemAlloc(&d_odata, mem_size)); // setup execution parameters dim3 grid(1, 1, 1); dim3 threads(num_threads, 1, 1); // execute the kernel CUfunction kernel_addr = getKernel(module); void *arr[] = {(void *)&d_idata, (void *)&d_odata}; checkCudaErrors( cuLaunchKernel(kernel_addr, grid.x, grid.y, grid.z, /* grid dim */ threads.x, threads.y, threads.z, /* block dim */ mem_size, 0, /* shared mem, stream */ &arr[0], /* arguments */ 0)); // check if kernel execution generated and error checkCudaErrors(cuCtxSynchronize()); // allocate mem for the result on host side T *h_odata = (T *)malloc(mem_size); // copy result from device to host checkCudaErrors(cuMemcpyDtoH(h_odata, d_odata, sizeof(T) * num_threads)); sdkStopTimer(&timer); printf("Processing time: %f (ms)\n", sdkGetTimerValue(&timer)); sdkDeleteTimer(&timer); // compute reference solution T *reference = (T *)malloc(mem_size); computeGold(reference, h_idata, num_threads); ArrayComparator comparator; ArrayFileWriter writer; // check result if (checkCmdLineFlag(argc, (const char **)argv, "regression")) { // write file for regression test writer.write("./data/regression.dat", h_odata, num_threads, 0.0f); } else { // custom output handling when no regression test running // in this case check if the result is equivalent to the expected solution bool res = comparator.compare(reference, h_odata, num_threads); printf("Compare %s\n\n", (1 == res) ? "OK" : "MISMATCH"); g_TotalFailures += (1 != res); } // cleanup memory free(h_idata); free(h_odata); free(reference); checkCudaErrors(cuMemFree(d_idata)); checkCudaErrors(cuMemFree(d_odata)); }