/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "common.h" #include namespace cg = cooperative_groups; /////////////////////////////////////////////////////////////////////////////// /// \brief one iteration of classical Horn-Schunck method, CUDA kernel. /// /// It is one iteration of Jacobi method for a corresponding linear system. /// Template parameters are describe CTA size /// \param[in] du0 current horizontal displacement approximation /// \param[in] dv0 current vertical displacement approximation /// \param[in] Ix image x derivative /// \param[in] Iy image y derivative /// \param[in] Iz temporal derivative /// \param[in] w width /// \param[in] h height /// \param[in] s stride /// \param[in] alpha degree of smoothness /// \param[out] du1 new horizontal displacement approximation /// \param[out] dv1 new vertical displacement approximation /////////////////////////////////////////////////////////////////////////////// template __global__ void JacobiIteration(const float *du0, const float *dv0, const float *Ix, const float *Iy, const float *Iz, int w, int h, int s, float alpha, float *du1, float *dv1) { // Handle to thread block group cg::thread_block cta = cg::this_thread_block(); volatile __shared__ float du[(bx + 2) * (by + 2)]; volatile __shared__ float dv[(bx + 2) * (by + 2)]; const int ix = threadIdx.x + blockIdx.x * blockDim.x; const int iy = threadIdx.y + blockIdx.y * blockDim.y; // position within global memory array const int pos = min(ix, w - 1) + min(iy, h - 1) * s; // position within shared memory array const int shMemPos = threadIdx.x + 1 + (threadIdx.y + 1) * (bx + 2); // Load data to shared memory. // load tile being processed du[shMemPos] = du0[pos]; dv[shMemPos] = dv0[pos]; // load necessary neighbouring elements // We clamp out-of-range coordinates. // It is equivalent to mirroring // because we access data only one step away from borders. if (threadIdx.y == 0) { // beginning of the tile const int bsx = blockIdx.x * blockDim.x; const int bsy = blockIdx.y * blockDim.y; // element position within matrix int x, y; // element position within linear array // gm - global memory // sm - shared memory int gmPos, smPos; x = min(bsx + threadIdx.x, w - 1); // row just below the tile y = max(bsy - 1, 0); gmPos = y * s + x; smPos = threadIdx.x + 1; du[smPos] = du0[gmPos]; dv[smPos] = dv0[gmPos]; // row above the tile y = min(bsy + by, h - 1); smPos += (by + 1) * (bx + 2); gmPos = y * s + x; du[smPos] = du0[gmPos]; dv[smPos] = dv0[gmPos]; } else if (threadIdx.y == 1) { // beginning of the tile const int bsx = blockIdx.x * blockDim.x; const int bsy = blockIdx.y * blockDim.y; // element position within matrix int x, y; // element position within linear array // gm - global memory // sm - shared memory int gmPos, smPos; y = min(bsy + threadIdx.x, h - 1); // column to the left x = max(bsx - 1, 0); smPos = bx + 2 + threadIdx.x * (bx + 2); gmPos = x + y * s; // check if we are within tile if (threadIdx.x < by) { du[smPos] = du0[gmPos]; dv[smPos] = dv0[gmPos]; // column to the right x = min(bsx + bx, w - 1); gmPos = y * s + x; smPos += bx + 1; du[smPos] = du0[gmPos]; dv[smPos] = dv0[gmPos]; } } cg::sync(cta); if (ix >= w || iy >= h) return; // now all necessary data are loaded to shared memory int left, right, up, down; left = shMemPos - 1; right = shMemPos + 1; up = shMemPos + bx + 2; down = shMemPos - bx - 2; float sumU = (du[left] + du[right] + du[up] + du[down]) * 0.25f; float sumV = (dv[left] + dv[right] + dv[up] + dv[down]) * 0.25f; float frac = (Ix[pos] * sumU + Iy[pos] * sumV + Iz[pos]) / (Ix[pos] * Ix[pos] + Iy[pos] * Iy[pos] + alpha); du1[pos] = sumU - Ix[pos] * frac; dv1[pos] = sumV - Iy[pos] * frac; } /////////////////////////////////////////////////////////////////////////////// /// \brief one iteration of classical Horn-Schunck method, CUDA kernel wrapper. /// /// It is one iteration of Jacobi method for a corresponding linear system. /// \param[in] du0 current horizontal displacement approximation /// \param[in] dv0 current vertical displacement approximation /// \param[in] Ix image x derivative /// \param[in] Iy image y derivative /// \param[in] Iz temporal derivative /// \param[in] w width /// \param[in] h height /// \param[in] s stride /// \param[in] alpha degree of smoothness /// \param[out] du1 new horizontal displacement approximation /// \param[out] dv1 new vertical displacement approximation /////////////////////////////////////////////////////////////////////////////// static void SolveForUpdate(const float *du0, const float *dv0, const float *Ix, const float *Iy, const float *Iz, int w, int h, int s, float alpha, float *du1, float *dv1) { // CTA size dim3 threads(32, 6); // grid size dim3 blocks(iDivUp(w, threads.x), iDivUp(h, threads.y)); JacobiIteration<32, 6><<>>(du0, dv0, Ix, Iy, Iz, w, h, s, alpha, du1, dv1); }