/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include "convolutionFFT2D_common.h" #include "convolutionFFT2D.cuh" //////////////////////////////////////////////////////////////////////////////// /// Position convolution kernel center at (0, 0) in the image //////////////////////////////////////////////////////////////////////////////// extern "C" void padKernel(float *d_Dst, float *d_Src, int fftH, int fftW, int kernelH, int kernelW, int kernelY, int kernelX) { assert(d_Src != d_Dst); dim3 threads(32, 8); dim3 grid(iDivUp(kernelW, threads.x), iDivUp(kernelH, threads.y)); SET_FLOAT_BASE; #if (USE_TEXTURE) cudaTextureObject_t texFloat; cudaResourceDesc texRes; memset(&texRes, 0, sizeof(cudaResourceDesc)); texRes.resType = cudaResourceTypeLinear; texRes.res.linear.devPtr = d_Src; texRes.res.linear.sizeInBytes = sizeof(float) * kernelH * kernelW; texRes.res.linear.desc = cudaCreateChannelDesc(); cudaTextureDesc texDescr; memset(&texDescr, 0, sizeof(cudaTextureDesc)); texDescr.normalizedCoords = false; texDescr.filterMode = cudaFilterModeLinear; texDescr.addressMode[0] = cudaAddressModeWrap; texDescr.readMode = cudaReadModeElementType; checkCudaErrors(cudaCreateTextureObject(&texFloat, &texRes, &texDescr, NULL)); #endif padKernel_kernel<<>>(d_Dst, d_Src, fftH, fftW, kernelH, kernelW, kernelY, kernelX #if (USE_TEXTURE) , texFloat #endif ); getLastCudaError("padKernel_kernel<<<>>> execution failed\n"); #if (USE_TEXTURE) checkCudaErrors(cudaDestroyTextureObject(texFloat)); #endif } //////////////////////////////////////////////////////////////////////////////// // Prepare data for "pad to border" addressing mode //////////////////////////////////////////////////////////////////////////////// extern "C" void padDataClampToBorder(float *d_Dst, float *d_Src, int fftH, int fftW, int dataH, int dataW, int kernelW, int kernelH, int kernelY, int kernelX) { assert(d_Src != d_Dst); dim3 threads(32, 8); dim3 grid(iDivUp(fftW, threads.x), iDivUp(fftH, threads.y)); #if (USE_TEXTURE) cudaTextureObject_t texFloat; cudaResourceDesc texRes; memset(&texRes, 0, sizeof(cudaResourceDesc)); texRes.resType = cudaResourceTypeLinear; texRes.res.linear.devPtr = d_Src; texRes.res.linear.sizeInBytes = sizeof(float) * dataH * dataW; texRes.res.linear.desc = cudaCreateChannelDesc(); cudaTextureDesc texDescr; memset(&texDescr, 0, sizeof(cudaTextureDesc)); texDescr.normalizedCoords = false; texDescr.filterMode = cudaFilterModeLinear; texDescr.addressMode[0] = cudaAddressModeWrap; texDescr.readMode = cudaReadModeElementType; checkCudaErrors(cudaCreateTextureObject(&texFloat, &texRes, &texDescr, NULL)); #endif padDataClampToBorder_kernel<<>>( d_Dst, d_Src, fftH, fftW, dataH, dataW, kernelH, kernelW, kernelY, kernelX #if (USE_TEXTURE) , texFloat #endif ); getLastCudaError("padDataClampToBorder_kernel<<<>>> execution failed\n"); #if (USE_TEXTURE) checkCudaErrors(cudaDestroyTextureObject(texFloat)); #endif } //////////////////////////////////////////////////////////////////////////////// // Modulate Fourier image of padded data by Fourier image of padded kernel // and normalize by FFT size //////////////////////////////////////////////////////////////////////////////// extern "C" void modulateAndNormalize(fComplex *d_Dst, fComplex *d_Src, int fftH, int fftW, int padding) { assert(fftW % 2 == 0); const int dataSize = fftH * (fftW / 2 + padding); modulateAndNormalize_kernel<<>>( d_Dst, d_Src, dataSize, 1.0f / (float)(fftW * fftH)); getLastCudaError("modulateAndNormalize() execution failed\n"); } //////////////////////////////////////////////////////////////////////////////// // 2D R2C / C2R post/preprocessing kernels //////////////////////////////////////////////////////////////////////////////// static const double PI = 3.1415926535897932384626433832795; static const uint BLOCKDIM = 256; extern "C" void spPostprocess2D(void *d_Dst, void *d_Src, uint DY, uint DX, uint padding, int dir) { assert(d_Src != d_Dst); assert(DX % 2 == 0); #if (POWER_OF_TWO) uint log2DX, log2DY; uint factorizationRemX = factorRadix2(log2DX, DX); uint factorizationRemY = factorRadix2(log2DY, DY); assert(factorizationRemX == 1 && factorizationRemY == 1); #endif const uint threadCount = DY * (DX / 2); const double phaseBase = dir * PI / (double)DX; #if (USE_TEXTURE) cudaTextureObject_t texComplex; cudaResourceDesc texRes; memset(&texRes, 0, sizeof(cudaResourceDesc)); texRes.resType = cudaResourceTypeLinear; texRes.res.linear.devPtr = d_Src; texRes.res.linear.sizeInBytes = sizeof(fComplex) * DY * (DX + padding); texRes.res.linear.desc = cudaCreateChannelDesc(); cudaTextureDesc texDescr; memset(&texDescr, 0, sizeof(cudaTextureDesc)); texDescr.normalizedCoords = false; texDescr.filterMode = cudaFilterModeLinear; texDescr.addressMode[0] = cudaAddressModeWrap; texDescr.readMode = cudaReadModeElementType; checkCudaErrors( cudaCreateTextureObject(&texComplex, &texRes, &texDescr, NULL)); #endif spPostprocess2D_kernel<<>>( (fComplex *)d_Dst, (fComplex *)d_Src, DY, DX, threadCount, padding, (float)phaseBase #if (USE_TEXTURE) , texComplex #endif ); getLastCudaError("spPostprocess2D_kernel<<<>>> execution failed\n"); #if (USE_TEXTURE) checkCudaErrors(cudaDestroyTextureObject(texComplex)); #endif } extern "C" void spPreprocess2D(void *d_Dst, void *d_Src, uint DY, uint DX, uint padding, int dir) { assert(d_Src != d_Dst); assert(DX % 2 == 0); #if (POWER_OF_TWO) uint log2DX, log2DY; uint factorizationRemX = factorRadix2(log2DX, DX); uint factorizationRemY = factorRadix2(log2DY, DY); assert(factorizationRemX == 1 && factorizationRemY == 1); #endif const uint threadCount = DY * (DX / 2); const double phaseBase = -dir * PI / (double)DX; #if (USE_TEXTURE) cudaTextureObject_t texComplex; cudaResourceDesc texRes; memset(&texRes, 0, sizeof(cudaResourceDesc)); texRes.resType = cudaResourceTypeLinear; texRes.res.linear.devPtr = d_Src; texRes.res.linear.sizeInBytes = sizeof(fComplex) * DY * (DX + padding); texRes.res.linear.desc = cudaCreateChannelDesc(); cudaTextureDesc texDescr; memset(&texDescr, 0, sizeof(cudaTextureDesc)); texDescr.normalizedCoords = false; texDescr.filterMode = cudaFilterModeLinear; texDescr.addressMode[0] = cudaAddressModeWrap; texDescr.readMode = cudaReadModeElementType; checkCudaErrors( cudaCreateTextureObject(&texComplex, &texRes, &texDescr, NULL)); #endif spPreprocess2D_kernel<<>>( (fComplex *)d_Dst, (fComplex *)d_Src, DY, DX, threadCount, padding, (float)phaseBase #if (USE_TEXTURE) , texComplex #endif ); getLastCudaError("spPreprocess2D_kernel<<<>>> execution failed\n"); #if (USE_TEXTURE) checkCudaErrors(cudaDestroyTextureObject(texComplex)); #endif } //////////////////////////////////////////////////////////////////////////////// // Combined spPostprocess2D + modulateAndNormalize + spPreprocess2D //////////////////////////////////////////////////////////////////////////////// extern "C" void spProcess2D(void *d_Dst, void *d_SrcA, void *d_SrcB, uint DY, uint DX, int dir) { assert(DY % 2 == 0); #if (POWER_OF_TWO) uint log2DX, log2DY; uint factorizationRemX = factorRadix2(log2DX, DX); uint factorizationRemY = factorRadix2(log2DY, DY); assert(factorizationRemX == 1 && factorizationRemY == 1); #endif const uint threadCount = (DY / 2) * DX; const double phaseBase = dir * PI / (double)DX; #if (USE_TEXTURE) cudaTextureObject_t texComplexA, texComplexB; cudaResourceDesc texRes; memset(&texRes, 0, sizeof(cudaResourceDesc)); texRes.resType = cudaResourceTypeLinear; texRes.res.linear.devPtr = d_SrcA; texRes.res.linear.sizeInBytes = sizeof(fComplex) * DY * DX; texRes.res.linear.desc = cudaCreateChannelDesc(); cudaTextureDesc texDescr; memset(&texDescr, 0, sizeof(cudaTextureDesc)); texDescr.normalizedCoords = false; texDescr.filterMode = cudaFilterModeLinear; texDescr.addressMode[0] = cudaAddressModeWrap; texDescr.readMode = cudaReadModeElementType; checkCudaErrors( cudaCreateTextureObject(&texComplexA, &texRes, &texDescr, NULL)); memset(&texRes, 0, sizeof(cudaResourceDesc)); texRes.resType = cudaResourceTypeLinear; texRes.res.linear.devPtr = d_SrcB; texRes.res.linear.sizeInBytes = sizeof(fComplex) * DY * DX; texRes.res.linear.desc = cudaCreateChannelDesc(); memset(&texDescr, 0, sizeof(cudaTextureDesc)); texDescr.normalizedCoords = false; texDescr.filterMode = cudaFilterModeLinear; texDescr.addressMode[0] = cudaAddressModeWrap; texDescr.readMode = cudaReadModeElementType; checkCudaErrors( cudaCreateTextureObject(&texComplexB, &texRes, &texDescr, NULL)); #endif spProcess2D_kernel<<>>( (fComplex *)d_Dst, (fComplex *)d_SrcA, (fComplex *)d_SrcB, DY, DX, threadCount, (float)phaseBase, 0.5f / (float)(DY * DX) #if (USE_TEXTURE) , texComplexA, texComplexB #endif ); getLastCudaError("spProcess2D_kernel<<<>>> execution failed\n"); #if (USE_TEXTURE) checkCudaErrors(cudaDestroyTextureObject(texComplexA)); checkCudaErrors(cudaDestroyTextureObject(texComplexB)); #endif }