/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* This sample is a templatized version of the template project. * It also shows how to correctly templatize dynamically allocated shared * memory arrays. * Host code. */ // System includes #include #include #include #include // CUDA runtime #include // helper functions and utilities to work with CUDA #include #include #ifndef MAX #define MAX(a, b) (a > b ? a : b) #endif // includes, kernels #include "sharedmem.cuh" int g_TotalFailures = 0; //////////////////////////////////////////////////////////////////////////////// //! Simple test kernel for device functionality //! @param g_idata input data in global memory //! @param g_odata output data in global memory //////////////////////////////////////////////////////////////////////////////// template __global__ void testKernel(T *g_idata, T *g_odata) { // Shared mem size is determined by the host app at run time SharedMemory smem; T *sdata = smem.getPointer(); // access thread id const unsigned int tid = threadIdx.x; // access number of threads in this block const unsigned int num_threads = blockDim.x; // read in input data from global memory sdata[tid] = g_idata[tid]; __syncthreads(); // perform some computations sdata[tid] = (T)num_threads * sdata[tid]; __syncthreads(); // write data to global memory g_odata[tid] = sdata[tid]; } //////////////////////////////////////////////////////////////////////////////// // declaration, forward template void runTest(int argc, char **argv, int len); template void computeGold(T *reference, T *idata, const unsigned int len) { const T T_len = static_cast(len); for (unsigned int i = 0; i < len; ++i) { reference[i] = idata[i] * T_len; } } //////////////////////////////////////////////////////////////////////////////// // Program main //////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { printf("> runTest\n"); runTest(argc, argv, 32); printf("> runTest\n"); runTest(argc, argv, 64); printf("\n[simpleTemplates] -> Test Results: %d Failures\n", g_TotalFailures); exit(g_TotalFailures == 0 ? EXIT_SUCCESS : EXIT_FAILURE); } // To completely templatize runTest (below) with cutil, we need to use // template specialization to wrap up CUTIL's array comparison and file writing // functions for different types. // Here's the generic wrapper for cutCompare* template class ArrayComparator { public: bool compare(const T *reference, T *data, unsigned int len) { fprintf(stderr, "Error: no comparison function implemented for this type\n"); return false; } }; // Here's the specialization for ints: template <> class ArrayComparator { public: bool compare(const int *reference, int *data, unsigned int len) { return compareData(reference, data, len, 0.15f, 0.0f); } }; // Here's the specialization for floats: template <> class ArrayComparator { public: bool compare(const float *reference, float *data, unsigned int len) { return compareData(reference, data, len, 0.15f, 0.15f); } }; // Here's the generic wrapper for cutWriteFile* template class ArrayFileWriter { public: bool write(const char *filename, T *data, unsigned int len, float epsilon) { fprintf(stderr, "Error: no file write function implemented for this type\n"); return false; } }; // Here's the specialization for ints: template <> class ArrayFileWriter { public: bool write(const char *filename, int *data, unsigned int len, float epsilon) { return sdkWriteFile(filename, data, len, epsilon, false); } }; // Here's the specialization for floats: template <> class ArrayFileWriter { public: bool write(const char *filename, float *data, unsigned int len, float epsilon) { return sdkWriteFile(filename, data, len, epsilon, false); } }; //////////////////////////////////////////////////////////////////////////////// //! Run a simple test for CUDA //////////////////////////////////////////////////////////////////////////////// template void runTest(int argc, char **argv, int len) { int devID; cudaDeviceProp deviceProps; devID = findCudaDevice(argc, (const char **)argv); // get number of SMs on this GPU checkCudaErrors(cudaGetDeviceProperties(&deviceProps, devID)); printf("CUDA device [%s] has %d Multi-Processors\n", deviceProps.name, deviceProps.multiProcessorCount); // create and start timer StopWatchInterface *timer = NULL; sdkCreateTimer(&timer); // start the timer sdkStartTimer(&timer); unsigned int num_threads = len; unsigned int mem_size = sizeof(float) * num_threads; // allocate host memory T *h_idata = (T *)malloc(mem_size); // initialize the memory for (unsigned int i = 0; i < num_threads; ++i) { h_idata[i] = (T)i; } // allocate device memory T *d_idata; checkCudaErrors(cudaMalloc((void **)&d_idata, mem_size)); // copy host memory to device checkCudaErrors( cudaMemcpy(d_idata, h_idata, mem_size, cudaMemcpyHostToDevice)); // allocate device memory for result T *d_odata; checkCudaErrors(cudaMalloc((void **)&d_odata, mem_size)); // setup execution parameters dim3 grid(1, 1, 1); dim3 threads(num_threads, 1, 1); // execute the kernel testKernel<<>>(d_idata, d_odata); // check if kernel execution generated and error getLastCudaError("Kernel execution failed"); // allocate mem for the result on host side T *h_odata = (T *)malloc(mem_size); // copy result from device to host checkCudaErrors(cudaMemcpy(h_odata, d_odata, sizeof(T) * num_threads, cudaMemcpyDeviceToHost)); sdkStopTimer(&timer); printf("Processing time: %f (ms)\n", sdkGetTimerValue(&timer)); sdkDeleteTimer(&timer); // compute reference solution T *reference = (T *)malloc(mem_size); computeGold(reference, h_idata, num_threads); ArrayComparator comparator; ArrayFileWriter writer; // check result if (checkCmdLineFlag(argc, (const char **)argv, "regression")) { // write file for regression test writer.write("./data/regression.dat", h_odata, num_threads, 0.0f); } else { // custom output handling when no regression test running // in this case check if the result is equivalent to the expected solution bool res = comparator.compare(reference, h_odata, num_threads); printf("Compare %s\n\n", (1 == res) ? "OK" : "MISMATCH"); g_TotalFailures += (1 != res); } // cleanup memory free(h_idata); free(h_odata); free(reference); checkCudaErrors(cudaFree(d_idata)); checkCudaErrors(cudaFree(d_odata)); }