/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This application demonstrates how to use the CUDA API to use multiple GPUs, * with an emphasis on simple illustration of the techniques (not on * performance). * * Note that in order to detect multiple GPUs in your system you have to disable * SLI in the nvidia control panel. Otherwise only one GPU is visible to the * application. On the other side, you can still extend your desktop to screens * attached to both GPUs. */ // System includes #include #include // CUDA runtime #include // helper functions and utilities to work with CUDA #include #include #ifndef MAX #define MAX(a, b) (a > b ? a : b) #endif #include "simpleMultiGPU.h" //////////////////////////////////////////////////////////////////////////////// // Data configuration //////////////////////////////////////////////////////////////////////////////// const int MAX_GPU_COUNT = 32; const int DATA_N = 1048576 * 32; //////////////////////////////////////////////////////////////////////////////// // Simple reduction kernel. // Refer to the 'reduction' CUDA Sample describing // reduction optimization strategies //////////////////////////////////////////////////////////////////////////////// __global__ static void reduceKernel(float *d_Result, float *d_Input, int N) { const int tid = blockIdx.x * blockDim.x + threadIdx.x; const int threadN = gridDim.x * blockDim.x; float sum = 0; for (int pos = tid; pos < N; pos += threadN) sum += d_Input[pos]; d_Result[tid] = sum; } //////////////////////////////////////////////////////////////////////////////// // Program main //////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { // Solver config TGPUplan plan[MAX_GPU_COUNT]; // GPU reduction results float h_SumGPU[MAX_GPU_COUNT]; float sumGPU; double sumCPU, diff; int i, j, gpuBase, GPU_N; const int BLOCK_N = 32; const int THREAD_N = 256; const int ACCUM_N = BLOCK_N * THREAD_N; printf("Starting simpleMultiGPU\n"); checkCudaErrors(cudaGetDeviceCount(&GPU_N)); if (GPU_N > MAX_GPU_COUNT) { GPU_N = MAX_GPU_COUNT; } printf("CUDA-capable device count: %i\n", GPU_N); printf("Generating input data...\n\n"); // Subdividing input data across GPUs // Get data sizes for each GPU for (i = 0; i < GPU_N; i++) { plan[i].dataN = DATA_N / GPU_N; } // Take into account "odd" data sizes for (i = 0; i < DATA_N % GPU_N; i++) { plan[i].dataN++; } // Assign data ranges to GPUs gpuBase = 0; for (i = 0; i < GPU_N; i++) { plan[i].h_Sum = h_SumGPU + i; gpuBase += plan[i].dataN; } // Create streams for issuing GPU command asynchronously and allocate memory // (GPU and System page-locked) for (i = 0; i < GPU_N; i++) { checkCudaErrors(cudaSetDevice(i)); checkCudaErrors(cudaStreamCreate(&plan[i].stream)); // Allocate memory checkCudaErrors( cudaMalloc((void **)&plan[i].d_Data, plan[i].dataN * sizeof(float))); checkCudaErrors( cudaMalloc((void **)&plan[i].d_Sum, ACCUM_N * sizeof(float))); checkCudaErrors(cudaMallocHost((void **)&plan[i].h_Sum_from_device, ACCUM_N * sizeof(float))); checkCudaErrors(cudaMallocHost((void **)&plan[i].h_Data, plan[i].dataN * sizeof(float))); for (j = 0; j < plan[i].dataN; j++) { plan[i].h_Data[j] = (float)rand() / (float)RAND_MAX; } } // Start timing and compute on GPU(s) printf("Computing with %d GPUs...\n", GPU_N); // create and start timer StopWatchInterface *timer = NULL; sdkCreateTimer(&timer); // start the timer sdkStartTimer(&timer); // Copy data to GPU, launch the kernel and copy data back. All asynchronously for (i = 0; i < GPU_N; i++) { // Set device checkCudaErrors(cudaSetDevice(i)); // Copy input data from CPU checkCudaErrors(cudaMemcpyAsync(plan[i].d_Data, plan[i].h_Data, plan[i].dataN * sizeof(float), cudaMemcpyHostToDevice, plan[i].stream)); // Perform GPU computations reduceKernel<<>>( plan[i].d_Sum, plan[i].d_Data, plan[i].dataN); getLastCudaError("reduceKernel() execution failed.\n"); // Read back GPU results checkCudaErrors(cudaMemcpyAsync(plan[i].h_Sum_from_device, plan[i].d_Sum, ACCUM_N * sizeof(float), cudaMemcpyDeviceToHost, plan[i].stream)); } // Process GPU results for (i = 0; i < GPU_N; i++) { float sum; // Set device checkCudaErrors(cudaSetDevice(i)); // Wait for all operations to finish cudaStreamSynchronize(plan[i].stream); // Finalize GPU reduction for current subvector sum = 0; for (j = 0; j < ACCUM_N; j++) { sum += plan[i].h_Sum_from_device[j]; } *(plan[i].h_Sum) = (float)sum; // Shut down this GPU checkCudaErrors(cudaFreeHost(plan[i].h_Sum_from_device)); checkCudaErrors(cudaFree(plan[i].d_Sum)); checkCudaErrors(cudaFree(plan[i].d_Data)); checkCudaErrors(cudaStreamDestroy(plan[i].stream)); } sumGPU = 0; for (i = 0; i < GPU_N; i++) { sumGPU += h_SumGPU[i]; } sdkStopTimer(&timer); printf(" GPU Processing time: %f (ms)\n\n", sdkGetTimerValue(&timer)); sdkDeleteTimer(&timer); // Compute on Host CPU printf("Computing with Host CPU...\n\n"); sumCPU = 0; for (i = 0; i < GPU_N; i++) { for (j = 0; j < plan[i].dataN; j++) { sumCPU += plan[i].h_Data[j]; } } // Compare GPU and CPU results printf("Comparing GPU and Host CPU results...\n"); diff = fabs(sumCPU - sumGPU) / fabs(sumCPU); printf(" GPU sum: %f\n CPU sum: %f\n", sumGPU, sumCPU); printf(" Relative difference: %E \n\n", diff); // Cleanup and shutdown for (i = 0; i < GPU_N; i++) { checkCudaErrors(cudaSetDevice(i)); checkCudaErrors(cudaFreeHost(plan[i].h_Data)); } exit((diff < 1e-5) ? EXIT_SUCCESS : EXIT_FAILURE); }