/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* This example demonstrates how to use the CUDA Direct3D bindings with the * runtime API. * Device code. */ #ifndef SIMPLED3D10RENDERTARGET_KERNEL_CU #define SIMPLED3D10RENDERTARGET_KERNEL_CU // includes, C string library #include #include #include // includes, cuda #include #include #include // includes, project #include // includes cuda.h and cuda_runtime_api.h //#include "checkCudaErrors" #define BIN_COUNT 256 #define HISTOGRAM_SIZE (BIN_COUNT * sizeof(unsigned int)) texture colorTex; //////////////////////////////////////////////////////////////////////////////// // GPU-specific definitions //////////////////////////////////////////////////////////////////////////////// // Fast mul on G8x / G9x / G100 #define IMUL(a, b) __mul24(a, b) // Machine warp size // G80's warp size is 32 threads #define WARP_LOG2SIZE 5 // Warps in thread block for histogram256Kernel() #define WARP_N 6 // Corresponding thread block size in threads for histogram256Kernel() #define THREAD_N (WARP_N << WARP_LOG2SIZE) // Total histogram size (in counters) per thread block for histogram256Kernel() #define BLOCK_MEMORY (WARP_N * BIN_COUNT) // Thread block count for histogram256Kernel() #define BLOCK_N 64 //////////////////////////////////////////////////////////////////////////////// // If threadPos == threadIdx.x, there are always 4-way bank conflicts, // since each group of 16 threads (half-warp) accesses different bytes, // but only within 4 shared memory banks. Having shuffled bits of threadIdx.x // as in histogram64GPU(), each half-warp accesses different shared memory banks // avoiding any bank conflicts at all. // Refer to the supplied whitepaper for detailed explanations. //////////////////////////////////////////////////////////////////////////////// __device__ inline void addData256(volatile unsigned int *s_WarpHist, unsigned int data, unsigned int threadTag) { unsigned int count; do { count = s_WarpHist[data] & 0x07FFFFFFU; count = threadTag | (count + 1); s_WarpHist[data] = count; } while (s_WarpHist[data] != count); } //////////////////////////////////////////////////////////////////////////////// // Main histogram calculation kernel //////////////////////////////////////////////////////////////////////////////// static __global__ void histogramTex256Kernel(unsigned int *d_Result, unsigned int width, unsigned int height, int dataN) { // Current global thread index const int globalTid = IMUL(blockIdx.x, blockDim.x) + threadIdx.x; // Total number of threads in the compute grid const int numThreads = IMUL(blockDim.x, gridDim.x); // Thread tag for addData256() // WARP_LOG2SIZE higher bits of counter values are tagged // by lower WARP_LOG2SIZE threadID bits const unsigned int threadTag = threadIdx.x << (32 - WARP_LOG2SIZE); // Shared memory storage for each warp volatile __shared__ unsigned int s_Hist[BLOCK_MEMORY]; // Current warp shared memory base const int warpBase = (threadIdx.x >> WARP_LOG2SIZE) * BIN_COUNT; // Clear shared memory buffer for current thread block before processing for (int pos = threadIdx.x; pos < BLOCK_MEMORY; pos += blockDim.x) s_Hist[pos] = 0; // Cycle through the entire data set, update subhistograms for each warp __syncthreads(); for (int pos = globalTid; pos < dataN; pos += numThreads) { // NOTE: check this... Not sure this is what needs to be done int py = pos / width; int px = pos - (py * width); uchar4 data4 = tex2D(colorTex, px, py); addData256(s_Hist + warpBase, (data4.x), threadTag); addData256(s_Hist + warpBase, (data4.y), threadTag); addData256(s_Hist + warpBase, (data4.z), threadTag); addData256(s_Hist + warpBase, (data4.w), threadTag); } __syncthreads(); // Merge per-warp histograms into per-block and write to global memory for (int pos = threadIdx.x; pos < BIN_COUNT; pos += blockDim.x) { unsigned int sum = 0; for (int base = 0; base < BLOCK_MEMORY; base += BIN_COUNT) sum += s_Hist[base + pos] & 0x07FFFFFFU; d_Result[blockIdx.x * BIN_COUNT + pos] = sum; } } /////////////////////////////////////////////////////////////////////////////// // Merge BLOCK_N subhistograms of BIN_COUNT bins into final histogram /////////////////////////////////////////////////////////////////////////////// // gridDim.x == BIN_COUNT // blockDim.x == BLOCK_N // blockIdx.x == bin counter processed by current block // threadIdx.x == subhistogram index static __global__ void mergeHistogramTex256Kernel(unsigned int *d_Result) { __shared__ unsigned int data[BLOCK_N]; // Reads are uncoalesced, but this final stage takes // only a fraction of total processing time data[threadIdx.x] = d_Result[threadIdx.x * BIN_COUNT + blockIdx.x]; for (int stride = BLOCK_N / 2; stride > 0; stride >>= 1) { __syncthreads(); if (threadIdx.x < stride) data[threadIdx.x] += data[threadIdx.x + stride]; } if (threadIdx.x == 0) d_Result[blockIdx.x] = data[0]; } //////////////////////////////////////////////////////////////////////////////// // Host interface to GPU histogram //////////////////////////////////////////////////////////////////////////////// extern "C" void checkCudaError() { cudaError_t err = cudaGetLastError(); if (cudaSuccess != err) { fprintf(stderr, "Cuda error: %s.\n", cudaGetErrorString(err)); exit(2); } } // Maximum block count for histogram64kernel() // Limits input data size to 756MB // const int MAX_BLOCK_N = 16384; // Internal memory allocation // const int BLOCK_N2 = 32; extern "C" void createHistogramTex(unsigned int *h_Result, unsigned int width, unsigned int height, cudaArray *colorArray) { cudaBindTextureToArray(colorTex, colorArray); checkCudaError(); histogramTex256Kernel<<>>(h_Result, width, height, width * height / 4); checkCudaError(); mergeHistogramTex256Kernel<<>>(h_Result); checkCudaError(); cudaUnbindTexture(colorTex); checkCudaError(); #if 0 // Dummy fill test unsigned int toto[256]; for (int i=0; i<256; i++) { toto[i] = i * 100; } cudaMemcpy(h_Result, toto, HISTOGRAM_SIZE, cudaMemcpyHostToDevice); #endif checkCudaError(); } extern "C" void bindArrayToTexture(cudaArray *pArray) {} #endif // #ifndef SIMPLED3D10RENDERTARGET_KERNEL_CU