/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This sample calculates scalar products of a * given set of input vector pairs */ #include #include #include #include #include #include /////////////////////////////////////////////////////////////////////////////// // Calculate scalar products of VectorN vectors of ElementN elements on CPU /////////////////////////////////////////////////////////////////////////////// extern "C" void scalarProdCPU(float *h_C, float *h_A, float *h_B, int vectorN, int elementN); /////////////////////////////////////////////////////////////////////////////// // Calculate scalar products of VectorN vectors of ElementN elements on GPU /////////////////////////////////////////////////////////////////////////////// #include "scalarProd_kernel.cuh" //////////////////////////////////////////////////////////////////////////////// // Helper function, returning uniformly distributed // random float in [low, high] range //////////////////////////////////////////////////////////////////////////////// float RandFloat(float low, float high) { float t = (float)rand() / (float)RAND_MAX; return (1.0f - t) * low + t * high; } /////////////////////////////////////////////////////////////////////////////// // Data configuration /////////////////////////////////////////////////////////////////////////////// // Total number of input vector pairs; arbitrary const int VECTOR_N = 256; // Number of elements per vector; arbitrary, // but strongly preferred to be a multiple of warp size // to meet memory coalescing constraints const int ELEMENT_N = 4096; // Total number of data elements const int DATA_N = VECTOR_N * ELEMENT_N; const int DATA_SZ = DATA_N * sizeof(float); const int RESULT_SZ = VECTOR_N * sizeof(float); /////////////////////////////////////////////////////////////////////////////// // Main program /////////////////////////////////////////////////////////////////////////////// int main(int argc, char **argv) { float *h_A, *h_B, *h_C_CPU, *h_C_GPU; float *d_A, *d_B, *d_C; double delta, ref, sum_delta, sum_ref, L1norm; StopWatchInterface *hTimer = NULL; int i; printf("%s Starting...\n\n", argv[0]); // use command-line specified CUDA device, otherwise use device with highest // Gflops/s findCudaDevice(argc, (const char **)argv); sdkCreateTimer(&hTimer); printf("Initializing data...\n"); printf("...allocating CPU memory.\n"); h_A = (float *)malloc(DATA_SZ); h_B = (float *)malloc(DATA_SZ); h_C_CPU = (float *)malloc(RESULT_SZ); h_C_GPU = (float *)malloc(RESULT_SZ); printf("...allocating GPU memory.\n"); checkCudaErrors(cudaMalloc((void **)&d_A, DATA_SZ)); checkCudaErrors(cudaMalloc((void **)&d_B, DATA_SZ)); checkCudaErrors(cudaMalloc((void **)&d_C, RESULT_SZ)); printf("...generating input data in CPU mem.\n"); srand(123); // Generating input data on CPU for (i = 0; i < DATA_N; i++) { h_A[i] = RandFloat(0.0f, 1.0f); h_B[i] = RandFloat(0.0f, 1.0f); } printf("...copying input data to GPU mem.\n"); // Copy options data to GPU memory for further processing checkCudaErrors(cudaMemcpy(d_A, h_A, DATA_SZ, cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpy(d_B, h_B, DATA_SZ, cudaMemcpyHostToDevice)); printf("Data init done.\n"); printf("Executing GPU kernel...\n"); checkCudaErrors(cudaDeviceSynchronize()); sdkResetTimer(&hTimer); sdkStartTimer(&hTimer); scalarProdGPU<<<128, 256>>>(d_C, d_A, d_B, VECTOR_N, ELEMENT_N); getLastCudaError("scalarProdGPU() execution failed\n"); checkCudaErrors(cudaDeviceSynchronize()); sdkStopTimer(&hTimer); printf("GPU time: %f msecs.\n", sdkGetTimerValue(&hTimer)); printf("Reading back GPU result...\n"); // Read back GPU results to compare them to CPU results checkCudaErrors(cudaMemcpy(h_C_GPU, d_C, RESULT_SZ, cudaMemcpyDeviceToHost)); printf("Checking GPU results...\n"); printf("..running CPU scalar product calculation\n"); scalarProdCPU(h_C_CPU, h_A, h_B, VECTOR_N, ELEMENT_N); printf("...comparing the results\n"); // Calculate max absolute difference and L1 distance // between CPU and GPU results sum_delta = 0; sum_ref = 0; for (i = 0; i < VECTOR_N; i++) { delta = fabs(h_C_GPU[i] - h_C_CPU[i]); ref = h_C_CPU[i]; sum_delta += delta; sum_ref += ref; } L1norm = sum_delta / sum_ref; printf("Shutting down...\n"); checkCudaErrors(cudaFree(d_C)); checkCudaErrors(cudaFree(d_B)); checkCudaErrors(cudaFree(d_A)); free(h_C_GPU); free(h_C_CPU); free(h_B); free(h_A); sdkDeleteTimer(&hTimer); printf("L1 error: %E\n", L1norm); printf((L1norm < 1e-6) ? "Test passed\n" : "Test failed!\n"); exit(L1norm < 1e-6 ? EXIT_SUCCESS : EXIT_FAILURE); }