/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * This sample implements a conjugate gradient solver on GPU * using CUBLAS and CUSPARSE * */ // includes, system #include #include #include /* Using updated (v2) interfaces to cublas */ #include #include #include // Utilities and system includes #include // helper function CUDA error checking and initialization #include // helper for shared functions common to CUDA Samples const char *sSDKname = "conjugateGradient"; /* genTridiag: generate a random tridiagonal symmetric matrix */ void genTridiag(int *I, int *J, float *val, int N, int nz) { I[0] = 0, J[0] = 0, J[1] = 1; val[0] = (float)rand() / RAND_MAX + 10.0f; val[1] = (float)rand() / RAND_MAX; int start; for (int i = 1; i < N; i++) { if (i > 1) { I[i] = I[i - 1] + 3; } else { I[1] = 2; } start = (i - 1) * 3 + 2; J[start] = i - 1; J[start + 1] = i; if (i < N - 1) { J[start + 2] = i + 1; } val[start] = val[start - 1]; val[start + 1] = (float)rand() / RAND_MAX + 10.0f; if (i < N - 1) { val[start + 2] = (float)rand() / RAND_MAX; } } I[N] = nz; } int main(int argc, char **argv) { int M = 0, N = 0, nz = 0, *I = NULL, *J = NULL; float *val = NULL; const float tol = 1e-5f; const int max_iter = 10000; float *x; float *rhs; float a, b, na, r0, r1; int *d_col, *d_row; float *d_val, *d_x, dot; float *d_r, *d_p, *d_Ax; int k; float alpha, beta, alpham1; // This will pick the best possible CUDA capable device cudaDeviceProp deviceProp; int devID = findCudaDevice(argc, (const char **)argv); if (devID < 0) { printf("exiting...\n"); exit(EXIT_SUCCESS); } checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID)); // Statistics about the GPU device printf( "> GPU device has %d Multi-Processors, SM %d.%d compute capabilities\n\n", deviceProp.multiProcessorCount, deviceProp.major, deviceProp.minor); /* Generate a random tridiagonal symmetric matrix in CSR format */ M = N = 1048576; nz = (N - 2) * 3 + 4; I = (int *)malloc(sizeof(int) * (N + 1)); J = (int *)malloc(sizeof(int) * nz); val = (float *)malloc(sizeof(float) * nz); genTridiag(I, J, val, N, nz); x = (float *)malloc(sizeof(float) * N); rhs = (float *)malloc(sizeof(float) * N); for (int i = 0; i < N; i++) { rhs[i] = 1.0; x[i] = 0.0; } /* Get handle to the CUBLAS context */ cublasHandle_t cublasHandle = 0; cublasStatus_t cublasStatus; cublasStatus = cublasCreate(&cublasHandle); checkCudaErrors(cublasStatus); /* Get handle to the CUSPARSE context */ cusparseHandle_t cusparseHandle = 0; checkCudaErrors(cusparseCreate(&cusparseHandle)); checkCudaErrors(cudaMalloc((void **)&d_col, nz * sizeof(int))); checkCudaErrors(cudaMalloc((void **)&d_row, (N + 1) * sizeof(int))); checkCudaErrors(cudaMalloc((void **)&d_val, nz * sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_x, N * sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_r, N * sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_p, N * sizeof(float))); checkCudaErrors(cudaMalloc((void **)&d_Ax, N * sizeof(float))); /* Wrap raw data into cuSPARSE generic API objects */ cusparseSpMatDescr_t matA = NULL; checkCudaErrors(cusparseCreateCsr(&matA, N, N, nz, d_row, d_col, d_val, CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I, CUSPARSE_INDEX_BASE_ZERO, CUDA_R_32F)); cusparseDnVecDescr_t vecx = NULL; checkCudaErrors(cusparseCreateDnVec(&vecx, N, d_x, CUDA_R_32F)); cusparseDnVecDescr_t vecp = NULL; checkCudaErrors(cusparseCreateDnVec(&vecp, N, d_p, CUDA_R_32F)); cusparseDnVecDescr_t vecAx = NULL; checkCudaErrors(cusparseCreateDnVec(&vecAx, N, d_Ax, CUDA_R_32F)); /* Initialize problem data */ cudaMemcpy(d_col, J, nz * sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(d_row, I, (N + 1) * sizeof(int), cudaMemcpyHostToDevice); cudaMemcpy(d_val, val, nz * sizeof(float), cudaMemcpyHostToDevice); cudaMemcpy(d_x, x, N * sizeof(float), cudaMemcpyHostToDevice); cudaMemcpy(d_r, rhs, N * sizeof(float), cudaMemcpyHostToDevice); alpha = 1.0; alpham1 = -1.0; beta = 0.0; r0 = 0.; /* Allocate workspace for cuSPARSE */ size_t bufferSize = 0; checkCudaErrors(cusparseSpMV_bufferSize( cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matA, vecx, &beta, vecAx, CUDA_R_32F, CUSPARSE_SPMV_ALG_DEFAULT, &bufferSize)); void *buffer = NULL; checkCudaErrors(cudaMalloc(&buffer, bufferSize)); /* Begin CG */ checkCudaErrors(cusparseSpMV(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matA, vecx, &beta, vecAx, CUDA_R_32F, CUSPARSE_SPMV_ALG_DEFAULT, buffer)); cublasSaxpy(cublasHandle, N, &alpham1, d_Ax, 1, d_r, 1); cublasStatus = cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, &r1); k = 1; while (r1 > tol * tol && k <= max_iter) { if (k > 1) { b = r1 / r0; cublasStatus = cublasSscal(cublasHandle, N, &b, d_p, 1); cublasStatus = cublasSaxpy(cublasHandle, N, &alpha, d_r, 1, d_p, 1); } else { cublasStatus = cublasScopy(cublasHandle, N, d_r, 1, d_p, 1); } checkCudaErrors(cusparseSpMV( cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matA, vecp, &beta, vecAx, CUDA_R_32F, CUSPARSE_SPMV_ALG_DEFAULT, buffer)); cublasStatus = cublasSdot(cublasHandle, N, d_p, 1, d_Ax, 1, &dot); a = r1 / dot; cublasStatus = cublasSaxpy(cublasHandle, N, &a, d_p, 1, d_x, 1); na = -a; cublasStatus = cublasSaxpy(cublasHandle, N, &na, d_Ax, 1, d_r, 1); r0 = r1; cublasStatus = cublasSdot(cublasHandle, N, d_r, 1, d_r, 1, &r1); cudaDeviceSynchronize(); printf("iteration = %3d, residual = %e\n", k, sqrt(r1)); k++; } cudaMemcpy(x, d_x, N * sizeof(float), cudaMemcpyDeviceToHost); float rsum, diff, err = 0.0; for (int i = 0; i < N; i++) { rsum = 0.0; for (int j = I[i]; j < I[i + 1]; j++) { rsum += val[j] * x[J[j]]; } diff = fabs(rsum - rhs[i]); if (diff > err) { err = diff; } } cusparseDestroy(cusparseHandle); cublasDestroy(cublasHandle); if (matA) { checkCudaErrors(cusparseDestroySpMat(matA)); } if (vecx) { checkCudaErrors(cusparseDestroyDnVec(vecx)); } if (vecAx) { checkCudaErrors(cusparseDestroyDnVec(vecAx)); } if (vecp) { checkCudaErrors(cusparseDestroyDnVec(vecp)); } free(I); free(J); free(val); free(x); free(rhs); cudaFree(d_col); cudaFree(d_row); cudaFree(d_val); cudaFree(d_x); cudaFree(d_r); cudaFree(d_p); cudaFree(d_Ax); printf("Test Summary: Error amount = %f\n", err); exit((k <= max_iter) ? 0 : 1); }