/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of NVIDIA CORPORATION nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /* * Portions Copyright (c) 2009 Mike Giles, Oxford University. All rights * reserved. * Portions Copyright (c) 2008 Frances Y. Kuo and Stephen Joe. All rights * reserved. * * Sobol Quasi-random Number Generator example * * Based on CUDA code submitted by Mike Giles, Oxford University, United Kingdom * http://people.maths.ox.ac.uk/~gilesm/ * * and C code developed by Stephen Joe, University of Waikato, New Zealand * and Frances Kuo, University of New South Wales, Australia * http://web.maths.unsw.edu.au/~fkuo/sobol/ * * For theoretical background see: * * P. Bratley and B.L. Fox. * Implementing Sobol's quasirandom sequence generator * http://portal.acm.org/citation.cfm?id=42288 * ACM Trans. on Math. Software, 14(1):88-100, 1988 * * S. Joe and F. Kuo. * Remark on algorithm 659: implementing Sobol's quasirandom sequence generator. * http://portal.acm.org/citation.cfm?id=641879 * ACM Trans. on Math. Software, 29(1):49-57, 2003 */ #include #include // CUDA Runtime Functions #include // helper functions for CUDA error checking and initialization #include // helper functions #include #include #include "sobol.h" #include "sobol_gold.h" #include "sobol_gpu.h" #define L1ERROR_TOLERANCE (1e-6) const char *sSDKsample = "Sobol Quasi-Random Number Generator"; void printHelp(int argc, char *argv[]) { if (argc > 0) { std::cout << "\nUsage: " << argv[0] << " \n\n"; } else { std::cout << "\nUsage: \n\n"; } std::cout << "\t--vectors=M specify number of vectors (required)\n"; std::cout << "\t The generator will output M vectors\n\n"; std::cout << "\t--dimensions=N specify number of dimensions (required)\n"; std::cout << "\t Each vector will consist of N components\n\n"; std::cout << std::endl; } int main(int argc, char *argv[]) { bool ok = true; // We will generate n_vectors vectors of n_dimensions numbers int n_vectors = 100000; int n_dimensions = 100; printf("%s Starting...\n\n", sSDKsample); // Print help if requested if (checkCmdLineFlag(argc, (const char **)argv, "help")) { printHelp(argc, argv); return 0; } if (checkCmdLineFlag(argc, (const char **)argv, "qatest")) { // For QA testing set a default number of vectors and dimensions n_vectors = 100000; n_dimensions = 100; } else { // Parse the command line to determine the required number of vectors if (checkCmdLineFlag(argc, (const char **)argv, "vectors")) { n_vectors = getCmdLineArgumentInt(argc, (const char **)argv, "vectors"); if (n_vectors < 1) { std::cerr << "Illegal argument: number of vectors must be positive " "(--vectors=N)" << std::endl; ok = false; } } std::cout << "> number of vectors = " << n_vectors << std::endl; // Parse the command line to determine the number of dimensions in each // vector if (checkCmdLineFlag(argc, (const char **)argv, "dimensions")) { n_dimensions = getCmdLineArgumentInt(argc, (const char **)argv, "dimensions"); if (n_dimensions < 1) { std::cerr << "Illegal argument: number of dimensions must be positive " "(--dimensions=N)" << std::endl; ok = false; } } std::cout << "> number of dimensions = " << n_dimensions << std::endl; } // If any of the command line checks failed, exit if (!ok) { return -1; } // Use command-line specified CUDA device, otherwise use device with highest // Gflops/s findCudaDevice(argc, (const char **)argv); // Create a timer to measure performance StopWatchInterface *hTimer = NULL; double time; sdkCreateTimer(&hTimer); // Allocate memory for the arrays std::cout << "Allocating CPU memory..." << std::endl; unsigned int *h_directions = 0; float *h_outputCPU = 0; float *h_outputGPU = 0; try { h_directions = new unsigned int[n_dimensions * n_directions]; h_outputCPU = new float[n_vectors * n_dimensions]; h_outputGPU = new float[n_vectors * n_dimensions]; } catch (std::exception e) { std::cerr << "Caught exception: " << e.what() << std::endl; std::cerr << "Unable to allocate CPU memory (try running with fewer " "vectors/dimensions)" << std::endl; exit(EXIT_FAILURE); } std::cout << "Allocating GPU memory..." << std::endl; unsigned int *d_directions; float *d_output; try { cudaError_t cudaResult; cudaResult = cudaMalloc((void **)&d_directions, n_dimensions * n_directions * sizeof(unsigned int)); if (cudaResult != cudaSuccess) { throw std::runtime_error(cudaGetErrorString(cudaResult)); } cudaResult = cudaMalloc((void **)&d_output, n_vectors * n_dimensions * sizeof(float)); if (cudaResult != cudaSuccess) { throw std::runtime_error(cudaGetErrorString(cudaResult)); } } catch (std::runtime_error e) { std::cerr << "Caught exception: " << e.what() << std::endl; std::cerr << "Unable to allocate GPU memory (try running with fewer " "vectors/dimensions)" << std::endl; exit(EXIT_FAILURE); } // Initialize the direction numbers (done on the host) std::cout << "Initializing direction numbers..." << std::endl; initSobolDirectionVectors(n_dimensions, h_directions); // Copy the direction numbers to the device std::cout << "Copying direction numbers to device..." << std::endl; checkCudaErrors(cudaMemcpy(d_directions, h_directions, n_dimensions * n_directions * sizeof(unsigned int), cudaMemcpyHostToDevice)); checkCudaErrors(cudaDeviceSynchronize()); // Execute the QRNG on the device std::cout << "Executing QRNG on GPU..." << std::endl; sdkResetTimer(&hTimer); sdkStartTimer(&hTimer); sobolGPU(n_vectors, n_dimensions, d_directions, d_output); checkCudaErrors(cudaDeviceSynchronize()); sdkStopTimer(&hTimer); time = sdkGetTimerValue(&hTimer); if (time < 1e-6) { std::cout << "Gsamples/s: problem size too small to measure, try " "increasing number of vectors or dimensions" << std::endl; } else { std::cout << "Gsamples/s: " << (double)n_vectors * (double)n_dimensions * 1E-9 / (time * 1E-3) << std::endl; } std::cout << "Reading results from GPU..." << std::endl; checkCudaErrors(cudaMemcpy(h_outputGPU, d_output, n_vectors * n_dimensions * sizeof(float), cudaMemcpyDeviceToHost)); std::cout << std::endl; // Execute the QRNG on the host std::cout << "Executing QRNG on CPU..." << std::endl; sdkResetTimer(&hTimer); sdkStartTimer(&hTimer); sobolCPU(n_vectors, n_dimensions, h_directions, h_outputCPU); sdkStopTimer(&hTimer); time = sdkGetTimerValue(&hTimer); if (time < 1e-6) { std::cout << "Gsamples/s: problem size too small to measure, try " "increasing number of vectors or dimensions" << std::endl; } else { std::cout << "Gsamples/s: " << (double)n_vectors * (double)n_dimensions * 1E-9 / (time * 1E-3) << std::endl; } // Check the results std::cout << "Checking results..." << std::endl; float l1norm_diff = 0.0F; float l1norm_ref = 0.0F; float l1error; // Special case if n_vectors is 1, when the vector should be exactly 0 if (n_vectors == 1) { for (int d = 0, v = 0; d < n_dimensions; d++) { float ref = h_outputCPU[d * n_vectors + v]; l1norm_diff += fabs(h_outputGPU[d * n_vectors + v] - ref); l1norm_ref += fabs(ref); } // Output the L1-Error l1error = l1norm_diff; if (l1norm_ref != 0) { std::cerr << "Error: L1-Norm of the reference is not zero (for single " "vector), golden generator appears broken\n"; } else { std::cout << "L1-Error: " << l1error << std::endl; } } else { for (int d = 0; d < n_dimensions; d++) { for (int v = 0; v < n_vectors; v++) { float ref = h_outputCPU[d * n_vectors + v]; l1norm_diff += fabs(h_outputGPU[d * n_vectors + v] - ref); l1norm_ref += fabs(ref); } } // Output the L1-Error l1error = l1norm_diff / l1norm_ref; if (l1norm_ref == 0) { std::cerr << "Error: L1-Norm of the reference is zero, golden generator " "appears broken\n"; } else { std::cout << "L1-Error: " << l1error << std::endl; } } // Cleanup and terminate std::cout << "Shutting down..." << std::endl; sdkDeleteTimer(&hTimer); delete h_directions; delete h_outputCPU; delete h_outputGPU; checkCudaErrors(cudaFree(d_directions)); checkCudaErrors(cudaFree(d_output)); // Check pass/fail using L1 error exit(l1error < L1ERROR_TOLERANCE ? EXIT_SUCCESS : EXIT_FAILURE); }