/* * Copyright 1993-2015 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ #ifndef __STABLEFLUIDS_KERNELS_CUH_ #define __STABLEFLUIDS_KERNELS_CUH_ // Vector data type used to velocity and force fields typedef float2 cData; void setupTexture(int x, int y); void updateTexture(cData *data, size_t w, size_t h, size_t pitch); void deleteTexture(void); // This method adds constant force vectors to the velocity field // stored in 'v' according to v(x,t+1) = v(x,t) + dt * f. __global__ void addForces_k(cData *v, int dx, int dy, int spx, int spy, float fx, float fy, int r, size_t pitch); // This method performs the velocity advection step, where we // trace velocity vectors back in time to update each grid cell. // That is, v(x,t+1) = v(p(x,-dt),t). Here we perform bilinear // interpolation in the velocity space. __global__ void advectVelocity_k(cData *v, float *vx, float *vy, int dx, int pdx, int dy, float dt, int lb, cudaTextureObject_t tex); // This method performs velocity diffusion and forces mass conservation // in the frequency domain. The inputs 'vx' and 'vy' are complex-valued // arrays holding the Fourier coefficients of the velocity field in // X and Y. Diffusion in this space takes a simple form described as: // v(k,t) = v(k,t) / (1 + visc * dt * k^2), where visc is the viscosity, // and k is the wavenumber. The projection step forces the Fourier // velocity vectors to be orthogonal to the wave wave vectors for each // wavenumber: v(k,t) = v(k,t) - ((k dot v(k,t) * k) / k^2. __global__ void diffuseProject_k(cData *vx, cData *vy, int dx, int dy, float dt, float visc, int lb); // This method updates the velocity field 'v' using the two complex // arrays from the previous step: 'vx' and 'vy'. Here we scale the // real components by 1/(dx*dy) to account for an unnormalized FFT. __global__ void updateVelocity_k(cData *v, float *vx, float *vy, int dx, int pdx, int dy, int lb, size_t pitch); // This method updates the particles by moving particle positions // according to the velocity field and time step. That is, for each // particle: p(t+1) = p(t) + dt * v(p(t)). __global__ void advectParticles_k(cData *part, cData *v, int dx, int dy, float dt, int lb, size_t pitch); #endif