/* * Copyright 2015 NVIDIA Corporation. All rights reserved. * * Please refer to the NVIDIA end user license agreement (EULA) associated * with this source code for terms and conditions that govern your use of * this software. Any use, reproduction, disclosure, or distribution of * this software and related documentation outside the terms of the EULA * is strictly prohibited. * */ #include #include #include #include #include #include "cusolverSp.h" #include "cusolverSp_LOWLEVEL_PREVIEW.h" #include #include "helper_cuda.h" #include "helper_cusolver.h" template int loadMMSparseMatrix( char *filename, char elem_type, bool csrFormat, int *m, int *n, int *nnz, T_ELEM **aVal, int **aRowInd, int **aColInd, int extendSymMatrix); void UsageSP(void) { printf( "\n"); printf( "-h : display this help\n"); printf( "-file= : filename containing a matrix in MM format\n"); printf( "-device= : if want to run on specific GPU\n"); exit( 0 ); } void parseCommandLineArguments(int argc, char *argv[], struct testOpts &opts) { memset(&opts, 0, sizeof(opts)); if (checkCmdLineFlag(argc, (const char **)argv, "-h")) { UsageSP(); } if (checkCmdLineFlag(argc, (const char **)argv, "file")) { char *fileName = 0; getCmdLineArgumentString(argc, (const char **)argv, "file", &fileName); if (fileName) { opts.sparse_mat_filename = fileName; } else { printf("\nIncorrect filename passed to -file \n "); UsageSP(); } } } int main (int argc, char *argv[]) { struct testOpts opts; cusolverSpHandle_t cusolverSpH = NULL; // reordering, permutation and 1st LU factorization cusparseHandle_t cusparseH = NULL; // residual evaluation cudaStream_t stream = NULL; cusparseMatDescr_t descrA = NULL; // A is a base-0 general matrix csrcholInfoHost_t h_info = NULL; // opaque info structure for LU with parital pivoting csrcholInfo_t d_info = NULL; // opaque info structure for LU with parital pivoting int rowsA = 0; // number of rows of A int colsA = 0; // number of columns of A int nnzA = 0; // number of nonzeros of A int baseA = 0; // base index in CSR format // CSR(A) from I/O int *h_csrRowPtrA = NULL; // n+1 int *h_csrColIndA = NULL; // nnzA double *h_csrValA = NULL; // nnzA double *h_x = NULL; // n, x = A \ b double *h_b = NULL; // n, b = ones(m,1) double *h_r = NULL; // n, r = b - A*x size_t size_internal = 0; size_t size_chol = 0; // size of working space for csrlu void *buffer_cpu = NULL; // working space for Cholesky void *buffer_gpu = NULL; // working space for Cholesky int *d_csrRowPtrA = NULL; // n+1 int *d_csrColIndA = NULL; // nnzA double *d_csrValA = NULL; // nnzA double *d_x = NULL; // n, x = A \ b double *d_b = NULL; // n, a copy of h_b double *d_r = NULL; // n, r = b - A*x // the constants used in residual evaluation, r = b - A*x const double minus_one = -1.0; const double one = 1.0; // the constant used in cusolverSp // singularity is -1 if A is invertible under tol // tol determines the condition of singularity int singularity = 0; const double tol = 1.e-14; double x_inf = 0.0; // |x| double r_inf = 0.0; // |r| double A_inf = 0.0; // |A| int errors = 0; parseCommandLineArguments(argc, argv, opts); findCudaDevice(argc, (const char **)argv); if (opts.sparse_mat_filename == NULL) { opts.sparse_mat_filename = sdkFindFilePath("lap2D_5pt_n100.mtx", argv[0]); if (opts.sparse_mat_filename != NULL) printf("Using default input file [%s]\n", opts.sparse_mat_filename); else printf("Could not find lap2D_5pt_n100.mtx\n"); } else { printf("Using input file [%s]\n", opts.sparse_mat_filename); } printf("step 1: read matrix market format\n"); if (opts.sparse_mat_filename) { if (loadMMSparseMatrix(opts.sparse_mat_filename, 'd', true , &rowsA, &colsA, &nnzA, &h_csrValA, &h_csrRowPtrA, &h_csrColIndA, true)) { return 1; } baseA = h_csrRowPtrA[0]; // baseA = {0,1} } else { fprintf(stderr, "Error: input matrix is not provided\n"); return 1; } if ( rowsA != colsA ) { fprintf(stderr, "Error: only support square matrix\n"); return 1; } printf("sparse matrix A is %d x %d with %d nonzeros, base=%d\n", rowsA, colsA, nnzA, baseA); checkCudaErrors(cusolverSpCreate(&cusolverSpH)); checkCudaErrors(cusparseCreate(&cusparseH)); checkCudaErrors(cudaStreamCreate(&stream)); checkCudaErrors(cusolverSpSetStream(cusolverSpH, stream)); checkCudaErrors(cusparseSetStream(cusparseH, stream)); checkCudaErrors(cusparseCreateMatDescr(&descrA)); checkCudaErrors(cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL)); if (baseA) { checkCudaErrors(cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ONE)); } else { checkCudaErrors(cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ZERO)); } h_x = (double*)malloc(sizeof(double)*colsA); h_b = (double*)malloc(sizeof(double)*rowsA); h_r = (double*)malloc(sizeof(double)*rowsA); assert(NULL != h_x); assert(NULL != h_b); assert(NULL != h_r); checkCudaErrors(cudaMalloc((void **)&d_csrRowPtrA, sizeof(int)*(rowsA+1))); checkCudaErrors(cudaMalloc((void **)&d_csrColIndA, sizeof(int)*nnzA)); checkCudaErrors(cudaMalloc((void **)&d_csrValA , sizeof(double)*nnzA)); checkCudaErrors(cudaMalloc((void **)&d_x, sizeof(double)*colsA)); checkCudaErrors(cudaMalloc((void **)&d_b, sizeof(double)*rowsA)); checkCudaErrors(cudaMalloc((void **)&d_r, sizeof(double)*rowsA)); for(int row = 0 ; row < rowsA ; row++) { h_b[row] = 1.0; } printf("step 2: create opaque info structure\n"); checkCudaErrors(cusolverSpCreateCsrcholInfoHost(&h_info)); printf("step 3: analyze chol(A) to know structure of L\n"); checkCudaErrors(cusolverSpXcsrcholAnalysisHost( cusolverSpH, rowsA, nnzA, descrA, h_csrRowPtrA, h_csrColIndA, h_info)); printf("step 4: workspace for chol(A)\n"); checkCudaErrors(cusolverSpDcsrcholBufferInfoHost( cusolverSpH, rowsA, nnzA, descrA, h_csrValA, h_csrRowPtrA, h_csrColIndA, h_info, &size_internal, &size_chol)); if (buffer_cpu) { free(buffer_cpu); } buffer_cpu = (void*)malloc(sizeof(char)*size_chol); assert(NULL != buffer_cpu); printf("step 5: compute A = L*L^T \n"); checkCudaErrors(cusolverSpDcsrcholFactorHost( cusolverSpH, rowsA, nnzA, descrA, h_csrValA, h_csrRowPtrA, h_csrColIndA, h_info, buffer_cpu)); printf("step 6: check if the matrix is singular \n"); checkCudaErrors(cusolverSpDcsrcholZeroPivotHost( cusolverSpH, h_info, tol, &singularity)); if ( 0 <= singularity) { fprintf(stderr, "Error: A is not invertible, singularity=%d\n", singularity); return 1; } printf("step 7: solve A*x = b \n"); checkCudaErrors(cusolverSpDcsrcholSolveHost( cusolverSpH, rowsA, h_b, h_x, h_info, buffer_cpu)); printf("step 8: evaluate residual r = b - A*x (result on CPU)\n"); // use GPU gemv to compute r = b - A*x checkCudaErrors(cudaMemcpy(d_csrRowPtrA, h_csrRowPtrA, sizeof(int)*(rowsA+1), cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpy(d_csrColIndA, h_csrColIndA, sizeof(int)*nnzA , cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpy(d_csrValA , h_csrValA , sizeof(double)*nnzA , cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpy(d_r, h_b, sizeof(double)*rowsA, cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpy(d_x, h_x, sizeof(double)*colsA, cudaMemcpyHostToDevice)); /* Wrap raw data into cuSPARSE generic API objects */ cusparseSpMatDescr_t matA = NULL; if (baseA) { checkCudaErrors(cusparseCreateCsr( &matA, rowsA, colsA, nnzA, d_csrRowPtrA, d_csrColIndA, d_csrValA, CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I, CUSPARSE_INDEX_BASE_ONE, CUDA_R_64F)); } else { checkCudaErrors(cusparseCreateCsr( &matA, rowsA, colsA, nnzA, d_csrRowPtrA, d_csrColIndA, d_csrValA, CUSPARSE_INDEX_32I, CUSPARSE_INDEX_32I, CUSPARSE_INDEX_BASE_ZERO, CUDA_R_64F)); } cusparseDnVecDescr_t vecx = NULL; checkCudaErrors(cusparseCreateDnVec(&vecx, colsA, d_x, CUDA_R_64F)); cusparseDnVecDescr_t vecAx = NULL; checkCudaErrors(cusparseCreateDnVec(&vecAx, rowsA, d_r, CUDA_R_64F)); /* Allocate workspace for cuSPARSE */ size_t bufferSize = 0; checkCudaErrors(cusparseSpMV_bufferSize( cusparseH, CUSPARSE_OPERATION_NON_TRANSPOSE, &minus_one, matA, vecx, &one, vecAx, CUDA_R_64F, CUSPARSE_SPMV_ALG_DEFAULT, &bufferSize)); void *buffer = NULL; checkCudaErrors(cudaMalloc(&buffer, bufferSize)); checkCudaErrors(cusparseSpMV( cusparseH, CUSPARSE_OPERATION_NON_TRANSPOSE, &minus_one, matA, vecx, &one, vecAx, CUDA_R_64F, CUSPARSE_SPMV_ALG_DEFAULT, buffer)); checkCudaErrors(cudaMemcpy(h_r, d_r, sizeof(double)*rowsA, cudaMemcpyDeviceToHost)); x_inf = vec_norminf(colsA, h_x); r_inf = vec_norminf(rowsA, h_r); A_inf = csr_mat_norminf(rowsA, colsA, nnzA, descrA, h_csrValA, h_csrRowPtrA, h_csrColIndA); printf("(CPU) |b - A*x| = %E \n", r_inf); printf("(CPU) |A| = %E \n", A_inf); printf("(CPU) |x| = %E \n", x_inf); printf("(CPU) |b - A*x|/(|A|*|x|) = %E \n", r_inf/(A_inf * x_inf)); printf("step 9: create opaque info structure\n"); checkCudaErrors(cusolverSpCreateCsrcholInfo(&d_info)); checkCudaErrors(cudaMemcpy(d_csrRowPtrA, h_csrRowPtrA, sizeof(int)*(rowsA+1), cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpy(d_csrColIndA, h_csrColIndA, sizeof(int)*nnzA , cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpy(d_csrValA , h_csrValA , sizeof(double)*nnzA , cudaMemcpyHostToDevice)); checkCudaErrors(cudaMemcpy(d_b, h_b, sizeof(double)*rowsA, cudaMemcpyHostToDevice)); printf("step 10: analyze chol(A) to know structure of L\n"); checkCudaErrors(cusolverSpXcsrcholAnalysis( cusolverSpH, rowsA, nnzA, descrA, d_csrRowPtrA, d_csrColIndA, d_info)); printf("step 11: workspace for chol(A)\n"); checkCudaErrors(cusolverSpDcsrcholBufferInfo( cusolverSpH, rowsA, nnzA, descrA, d_csrValA, d_csrRowPtrA, d_csrColIndA, d_info, &size_internal, &size_chol)); if (buffer_gpu) { checkCudaErrors(cudaFree(buffer_gpu)); } checkCudaErrors(cudaMalloc(&buffer_gpu, sizeof(char)*size_chol)); printf("step 12: compute A = L*L^T \n"); checkCudaErrors(cusolverSpDcsrcholFactor( cusolverSpH, rowsA, nnzA, descrA, d_csrValA, d_csrRowPtrA, d_csrColIndA, d_info, buffer_gpu)); printf("step 13: check if the matrix is singular \n"); checkCudaErrors(cusolverSpDcsrcholZeroPivot( cusolverSpH, d_info, tol, &singularity)); if ( 0 <= singularity){ fprintf(stderr, "Error: A is not invertible, singularity=%d\n", singularity); return 1; } printf("step 14: solve A*x = b \n"); checkCudaErrors(cusolverSpDcsrcholSolve( cusolverSpH, rowsA, d_b, d_x, d_info, buffer_gpu)); checkCudaErrors(cudaMemcpy(d_r, h_b, sizeof(double)*rowsA, cudaMemcpyHostToDevice)); checkCudaErrors(cusparseSpMV( cusparseH, CUSPARSE_OPERATION_NON_TRANSPOSE, &minus_one, matA, vecx, &one, vecAx, CUDA_R_64F, CUSPARSE_SPMV_ALG_DEFAULT, buffer)); checkCudaErrors(cudaMemcpy(h_r, d_r, sizeof(double)*rowsA, cudaMemcpyDeviceToHost)); r_inf = vec_norminf(rowsA, h_r); printf("(GPU) |b - A*x| = %E \n", r_inf); printf("(GPU) |b - A*x|/(|A|*|x|) = %E \n", r_inf/(A_inf * x_inf)); if (cusolverSpH) { checkCudaErrors(cusolverSpDestroy(cusolverSpH)); } if (cusparseH ) { checkCudaErrors(cusparseDestroy(cusparseH)); } if (stream ) { checkCudaErrors(cudaStreamDestroy(stream)); } if (descrA ) { checkCudaErrors(cusparseDestroyMatDescr(descrA)); } if (h_info ) { checkCudaErrors(cusolverSpDestroyCsrcholInfoHost(h_info)); } if (d_info ) { checkCudaErrors(cusolverSpDestroyCsrcholInfo(d_info)); } if (matA ) { checkCudaErrors(cusparseDestroySpMat(matA)); } if (vecx ) { checkCudaErrors(cusparseDestroyDnVec(vecx)); } if (vecAx ) { checkCudaErrors(cusparseDestroyDnVec(vecAx)); } if (h_csrValA ) { free(h_csrValA); } if (h_csrRowPtrA) { free(h_csrRowPtrA); } if (h_csrColIndA) { free(h_csrColIndA); } if (h_x ) { free(h_x); } if (h_b ) { free(h_b); } if (h_r ) { free(h_r); } if (buffer_cpu) { free(buffer_cpu); } if (buffer_gpu) { checkCudaErrors(cudaFree(buffer_gpu)); } if (d_csrValA ) { checkCudaErrors(cudaFree(d_csrValA)); } if (d_csrRowPtrA) { checkCudaErrors(cudaFree(d_csrRowPtrA)); } if (d_csrColIndA) { checkCudaErrors(cudaFree(d_csrColIndA)); } if (d_x) { checkCudaErrors(cudaFree(d_x)); } if (d_b) { checkCudaErrors(cudaFree(d_b)); } if (d_r) { checkCudaErrors(cudaFree(d_r)); } return 0; }