# EGLStream_CUDA_CrossGPU - EGLStream_CUDA_CrossGPU ## Description Demonstrates CUDA and EGL Streams interop, where consumer's EGL Stream is on one GPU and producer's on other and both consumer-producer are different processes. ## Key Concepts EGLStreams Interop ## Supported SM Architectures [SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 5.3 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus) [SM 8.6 ](https://developer.nvidia.com/cuda-gpus) [SM 8.7 ](https://developer.nvidia.com/cuda-gpus) [SM 8.9 ](https://developer.nvidia.com/cuda-gpus) [SM 9.0 ](https://developer.nvidia.com/cuda-gpus) ## Supported OSes Linux ## Supported CPU Architecture x86_64, armv7l ## CUDA APIs involved ### [CUDA Driver API](http://docs.nvidia.com/cuda/cuda-driver-api/index.html) cuDeviceGetName, cuEGLStreamConsumerReleaseFrame, cuEGLStreamConsumerConnect, cuEGLStreamConsumerDisconnect, cuCtxPushCurrent, cuEGLStreamProducerReturnFrame, cuStreamCreate, cuEGLStreamProducerPresentFrame, cuMemFree, cuGraphicsResourceGetMappedEglFrame, cuInit, cuMemcpyHtoD, cuDeviceGet, cuEGLStreamConsumerAcquireFrame, cuEGLStreamProducerDisconnect, cuEGLStreamProducerConnect, cuDeviceGetAttribute, cuCtxSynchronize, cuMemAlloc, cuCtxPopCurrent, cuCtxCreate ### [CUDA Runtime API](http://docs.nvidia.com/cuda/cuda-runtime-api/index.html) cudaMemcpy, cudaMalloc, cudaProducerPresentFrame, cudaFree, cudaGetErrorString, cudaConsumerReleaseFrame, cudaProducerReturnFrame, cudaDeviceSynchronize, cudaDeviceCreateProducer, cudaProducerDeinit, cudaProducerPrepareFrame, cudaGetValueMismatch, cudaConsumerAcquireFrame, cudaProducerInit, cudaDeviceCreateConsumer ## Dependencies needed to build/run [EGL](../../../README.md#egl) ## Prerequisites Download and install the [CUDA Toolkit 12.5](https://developer.nvidia.com/cuda-downloads) for your corresponding platform. Make sure the dependencies mentioned in [Dependencies]() section above are installed. ## Build and Run ### Linux The Linux samples are built using makefiles. To use the makefiles, change the current directory to the sample directory you wish to build, and run make: ``` $ cd $ make ``` The samples makefiles can take advantage of certain options: * **TARGET_ARCH=** - cross-compile targeting a specific architecture. Allowed architectures are x86_64, armv7l. By default, TARGET_ARCH is set to HOST_ARCH. On a x86_64 machine, not setting TARGET_ARCH is the equivalent of setting TARGET_ARCH=x86_64.
`$ make TARGET_ARCH=x86_64`
`$ make TARGET_ARCH=armv7l`
See [here](http://docs.nvidia.com/cuda/cuda-samples/index.html#cross-samples) for more details. * **dbg=1** - build with debug symbols ``` $ make dbg=1 ``` * **SMS="A B ..."** - override the SM architectures for which the sample will be built, where `"A B ..."` is a space-delimited list of SM architectures. For example, to generate SASS for SM 50 and SM 60, use `SMS="50 60"`. ``` $ make SMS="50 60" ``` * **HOST_COMPILER=** - override the default g++ host compiler. See the [Linux Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#system-requirements) for a list of supported host compilers. ``` $ make HOST_COMPILER=g++ ``` ## References (for more details)