Compare commits

...

1 Commits

Author SHA1 Message Date
Rob Nertney
1fa9c59db4 Fixing missing limits header on Vulkan app and missing cuDLA apps 2024-01-03 05:10:37 +00:00
21 changed files with 3560 additions and 8 deletions

View File

@ -1,6 +1,6 @@
## Changelog ## Changelog
### CUDA 12.1 ### CUDA 12.2
* libNVVM samples received updates * libNVVM samples received updates
* Fixed jitLto Case issues * Fixed jitLto Case issues
* Enabled HOST_COMPILER flag to the makefiles for GCC which is untested but may still work. * Enabled HOST_COMPILER flag to the makefiles for GCC which is untested but may still work.

View File

@ -0,0 +1,18 @@
{
"configurations": [
{
"name": "Linux",
"includePath": [
"${workspaceFolder}/**",
"${workspaceFolder}/../../../Common"
],
"defines": [],
"compilerPath": "/usr/local/cuda/bin/nvcc",
"cStandard": "gnu17",
"cppStandard": "gnu++14",
"intelliSenseMode": "linux-gcc-x64",
"configurationProvider": "ms-vscode.makefile-tools"
}
],
"version": 4
}

View File

@ -0,0 +1,7 @@
{
"recommendations": [
"nvidia.nsight-vscode-edition",
"ms-vscode.cpptools",
"ms-vscode.makefile-tools"
]
}

View File

@ -0,0 +1,10 @@
{
"configurations": [
{
"name": "CUDA C++: Launch",
"type": "cuda-gdb",
"request": "launch",
"program": "${workspaceFolder}/cuDLALayerwiseStatsHybrid"
}
]
}

View File

@ -0,0 +1,15 @@
{
"version": "2.0.0",
"tasks": [
{
"label": "sample",
"type": "shell",
"command": "make dbg=1",
"problemMatcher": ["$nvcc"],
"group": {
"kind": "build",
"isDefault": true
}
}
]
}

View File

@ -0,0 +1,400 @@
################################################################################
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
################################################################################
#
# Makefile project only supported on Mac OS X and Linux Platforms)
#
################################################################################
# Location of the CUDA Toolkit
CUDA_PATH ?= /usr/local/cuda
##############################
# start deprecated interface #
##############################
ifeq ($(x86_64),1)
$(info WARNING - x86_64 variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=x86_64 instead)
TARGET_ARCH ?= x86_64
endif
ifeq ($(ARMv7),1)
$(info WARNING - ARMv7 variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=armv7l instead)
TARGET_ARCH ?= armv7l
endif
ifeq ($(aarch64),1)
$(info WARNING - aarch64 variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=aarch64 instead)
TARGET_ARCH ?= aarch64
endif
ifeq ($(ppc64le),1)
$(info WARNING - ppc64le variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=ppc64le instead)
TARGET_ARCH ?= ppc64le
endif
ifneq ($(GCC),)
$(info WARNING - GCC variable has been deprecated)
$(info WARNING - please use HOST_COMPILER=$(GCC) instead)
HOST_COMPILER ?= $(GCC)
endif
ifneq ($(abi),)
$(error ERROR - abi variable has been removed)
endif
############################
# end deprecated interface #
############################
# architecture
HOST_ARCH := $(shell uname -m)
TARGET_ARCH ?= $(HOST_ARCH)
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le armv7l))
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le))
TARGET_SIZE := 64
else ifneq (,$(filter $(TARGET_ARCH),armv7l))
TARGET_SIZE := 32
endif
else
TARGET_SIZE := $(shell getconf LONG_BIT)
endif
else
$(error ERROR - unsupported value $(TARGET_ARCH) for TARGET_ARCH!)
endif
# sbsa and aarch64 systems look similar. Need to differentiate them at host level for now.
ifeq ($(HOST_ARCH),aarch64)
ifeq ($(CUDA_PATH)/targets/sbsa-linux,$(shell ls -1d $(CUDA_PATH)/targets/sbsa-linux 2>/dev/null))
HOST_ARCH := sbsa
TARGET_ARCH := sbsa
endif
endif
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq (,$(filter $(HOST_ARCH)-$(TARGET_ARCH),aarch64-armv7l x86_64-armv7l x86_64-aarch64 x86_64-sbsa x86_64-ppc64le))
$(error ERROR - cross compiling from $(HOST_ARCH) to $(TARGET_ARCH) is not supported!)
endif
endif
# When on native aarch64 system with userspace of 32-bit, change TARGET_ARCH to armv7l
ifeq ($(HOST_ARCH)-$(TARGET_ARCH)-$(TARGET_SIZE),aarch64-aarch64-32)
TARGET_ARCH = armv7l
endif
# operating system
HOST_OS := $(shell uname -s 2>/dev/null | tr "[:upper:]" "[:lower:]")
TARGET_OS ?= $(HOST_OS)
ifeq (,$(filter $(TARGET_OS),linux darwin qnx android))
$(error ERROR - unsupported value $(TARGET_OS) for TARGET_OS!)
endif
# host compiler
ifdef HOST_COMPILER
CUSTOM_HOST_COMPILER = 1
endif
ifeq ($(TARGET_OS),darwin)
ifeq ($(shell expr `xcodebuild -version | grep -i xcode | awk '{print $$2}' | cut -d'.' -f1` \>= 5),1)
HOST_COMPILER ?= clang++
endif
else ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq ($(HOST_ARCH)-$(TARGET_ARCH),x86_64-armv7l)
ifeq ($(TARGET_OS),linux)
HOST_COMPILER ?= arm-linux-gnueabihf-g++
else ifeq ($(TARGET_OS),qnx)
ifeq ($(QNX_HOST),)
$(error ERROR - QNX_HOST must be passed to the QNX host toolchain)
endif
ifeq ($(QNX_TARGET),)
$(error ERROR - QNX_TARGET must be passed to the QNX target toolchain)
endif
export QNX_HOST
export QNX_TARGET
HOST_COMPILER ?= $(QNX_HOST)/usr/bin/arm-unknown-nto-qnx6.6.0eabi-g++
else ifeq ($(TARGET_OS),android)
HOST_COMPILER ?= arm-linux-androideabi-g++
endif
else ifeq ($(TARGET_ARCH),aarch64)
ifeq ($(TARGET_OS), linux)
HOST_COMPILER ?= aarch64-linux-gnu-g++
else ifeq ($(TARGET_OS),qnx)
ifeq ($(QNX_HOST),)
$(error ERROR - QNX_HOST must be passed to the QNX host toolchain)
endif
ifeq ($(QNX_TARGET),)
$(error ERROR - QNX_TARGET must be passed to the QNX target toolchain)
endif
export QNX_HOST
export QNX_TARGET
HOST_COMPILER ?= $(QNX_HOST)/usr/bin/q++
else ifeq ($(TARGET_OS), android)
HOST_COMPILER ?= aarch64-linux-android-clang++
endif
else ifeq ($(TARGET_ARCH),sbsa)
HOST_COMPILER ?= aarch64-linux-gnu-g++
else ifeq ($(TARGET_ARCH),ppc64le)
HOST_COMPILER ?= powerpc64le-linux-gnu-g++
endif
endif
HOST_COMPILER ?= g++
NVCC := $(CUDA_PATH)/bin/nvcc -ccbin $(HOST_COMPILER)
# internal flags
NVCCFLAGS := -m${TARGET_SIZE}
CCFLAGS :=
LDFLAGS :=
# build flags
ifeq ($(TARGET_OS),darwin)
LDFLAGS += -rpath $(CUDA_PATH)/lib
CCFLAGS += -arch $(HOST_ARCH)
else ifeq ($(HOST_ARCH)-$(TARGET_ARCH)-$(TARGET_OS),x86_64-armv7l-linux)
LDFLAGS += --dynamic-linker=/lib/ld-linux-armhf.so.3
CCFLAGS += -mfloat-abi=hard
else ifeq ($(TARGET_OS),android)
LDFLAGS += -pie
CCFLAGS += -fpie -fpic -fexceptions
endif
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-linux)
ifneq ($(TARGET_FS),)
GCCVERSIONLTEQ46 := $(shell expr `$(HOST_COMPILER) -dumpversion` \<= 4.6)
ifeq ($(GCCVERSIONLTEQ46),1)
CCFLAGS += --sysroot=$(TARGET_FS)
endif
LDFLAGS += --sysroot=$(TARGET_FS)
LDFLAGS += -rpath-link=$(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/arm-linux-gnueabihf
endif
endif
ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-linux)
ifneq ($(TARGET_FS),)
GCCVERSIONLTEQ46 := $(shell expr `$(HOST_COMPILER) -dumpversion` \<= 4.6)
ifeq ($(GCCVERSIONLTEQ46),1)
CCFLAGS += --sysroot=$(TARGET_FS)
endif
LDFLAGS += --sysroot=$(TARGET_FS)
LDFLAGS += -rpath-link=$(TARGET_FS)/lib -L$(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/lib/aarch64-linux-gnu -L$(TARGET_FS)/lib/aarch64-linux-gnu
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib -L$(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/aarch64-linux-gnu -L$(TARGET_FS)/usr/lib/aarch64-linux-gnu
LDFLAGS += --unresolved-symbols=ignore-in-shared-libs
CCFLAGS += -isystem=$(TARGET_FS)/usr/include -I$(TARGET_FS)/usr/include -I$(TARGET_FS)/usr/include/libdrm
CCFLAGS += -isystem=$(TARGET_FS)/usr/include/aarch64-linux-gnu -I$(TARGET_FS)/usr/include/aarch64-linux-gnu
endif
endif
ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-qnx)
NVCCFLAGS += -D_QNX_SOURCE
NVCCFLAGS += --qpp-config 8.3.0,gcc_ntoaarch64le
CCFLAGS += -DWIN_INTERFACE_CUSTOM -I/usr/include/aarch64-qnx-gnu
LDFLAGS += -lsocket
LDFLAGS += -L/usr/lib/aarch64-qnx-gnu
CCFLAGS += "-Wl\,-rpath-link\,/usr/lib/aarch64-qnx-gnu"
ifdef TARGET_OVERRIDE
LDFLAGS += -lslog2
endif
ifneq ($(TARGET_FS),)
LDFLAGS += -L$(TARGET_FS)/usr/lib
CCFLAGS += "-Wl\,-rpath-link\,$(TARGET_FS)/usr/lib"
LDFLAGS += -L$(TARGET_FS)/usr/libnvidia
CCFLAGS += "-Wl\,-rpath-link\,$(TARGET_FS)/usr/libnvidia"
CCFLAGS += -I$(TARGET_FS)/../include
endif
endif
endif
ifdef TARGET_OVERRIDE # cuda toolkit targets override
NVCCFLAGS += -target-dir $(TARGET_OVERRIDE)
endif
# Install directory of different arch
CUDA_INSTALL_TARGET_DIR :=
ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-linux)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-gnueabihf/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-linux)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),sbsa-linux)
CUDA_INSTALL_TARGET_DIR = targets/sbsa-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-android)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-androideabi/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-android)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-linux-androideabi/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-qnx)
CUDA_INSTALL_TARGET_DIR = targets/ARMv7-linux-QNX/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-qnx)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-qnx/
else ifeq ($(TARGET_ARCH),ppc64le)
CUDA_INSTALL_TARGET_DIR = targets/ppc64le-linux/
endif
# Debug build flags
ifeq ($(dbg),1)
NVCCFLAGS += -g -G
BUILD_TYPE := debug
else
BUILD_TYPE := release
endif
ALL_CCFLAGS :=
ALL_CCFLAGS += $(NVCCFLAGS)
ALL_CCFLAGS += $(EXTRA_NVCCFLAGS)
ALL_CCFLAGS += $(addprefix -Xcompiler ,$(CCFLAGS))
ALL_CCFLAGS += $(addprefix -Xcompiler ,$(EXTRA_CCFLAGS))
SAMPLE_ENABLED := 1
# This sample is not supported on Linux x86_64
ifeq ($(TARGET_OS),linux)
ifeq ($(TARGET_ARCH),x86_64)
$(info >>> WARNING - cuDLALayerwiseStatsHybrid is not supported on Linux x86_64 - waiving sample <<<)
SAMPLE_ENABLED := 0
endif
endif
# This sample is not supported on Mac OSX
ifeq ($(TARGET_OS),darwin)
$(info >>> WARNING - cuDLALayerwiseStatsHybrid is not supported on Mac OSX - waiving sample <<<)
SAMPLE_ENABLED := 0
endif
# This sample is not supported on ARMv7
ifeq ($(TARGET_ARCH),armv7l)
$(info >>> WARNING - cuDLALayerwiseStatsHybrid is not supported on ARMv7 - waiving sample <<<)
SAMPLE_ENABLED := 0
endif
# This sample is not supported on sbsa
ifeq ($(TARGET_ARCH),sbsa)
$(info >>> WARNING - cuDLALayerwiseStatsHybrid is not supported on sbsa - waiving sample <<<)
SAMPLE_ENABLED := 0
endif
ALL_LDFLAGS :=
ALL_LDFLAGS += $(ALL_CCFLAGS)
ALL_LDFLAGS += $(addprefix -Xlinker ,$(LDFLAGS))
ALL_LDFLAGS += $(addprefix -Xlinker ,$(EXTRA_LDFLAGS))
# Common includes and paths for CUDA
INCLUDES := -I../../../Common
LIBRARIES :=
################################################################################
#Detect if installed version of GCC supports required C++11
ifeq ($(TARGET_OS),linux)
empty :=
space := $(empty) $(empty)
GCCVERSIONSTRING := $(shell expr `$(HOST_COMPILER) -dumpversion`)
#Create version number without "."
GCCVERSION := $(shell expr `echo $(GCCVERSIONSTRING)` | cut -f1 -d.)
GCCVERSION += $(shell expr `echo $(GCCVERSIONSTRING)` | cut -f2 -d.)
GCCVERSION += $(shell expr `echo $(GCCVERSIONSTRING)` | cut -f3 -d.)
# Make sure the version number has at least 3 decimals
GCCVERSION += 00
# Remove spaces from the version number
GCCVERSION := $(subst $(space),$(empty),$(GCCVERSION))
#$(warning $(GCCVERSION))
IS_MIN_VERSION := $(shell expr `echo $(GCCVERSION)` \>= 47000)
ifneq ($(CUSTOM_HOST_COMPILER), 1)
ifeq ($(IS_MIN_VERSION), 1)
$(info >>> GCC Version is greater or equal to 4.7.0 <<<)
else
$(info >>> Waiving build. Minimum GCC version required is 4.7.0<<<)
SAMPLE_ENABLED := 0
endif
else
$(warning >>> Custom HOST_COMPILER set; skipping GCC version check. This may lead to unintended behavior. Please note the minimum equivalent GCC version is 4.7.0 <<<)
endif
endif
# Gencode arguments
ifeq ($(TARGET_ARCH),$(filter $(TARGET_ARCH),armv7l aarch64 sbsa))
SMS ?= 53 61 70 72 75 80 86 87 90
else
SMS ?= 50 52 60 61 70 75 80 86 89 90
endif
ifeq ($(SMS),)
$(info >>> WARNING - no SM architectures have been specified - waiving sample <<<)
SAMPLE_ENABLED := 0
endif
ifeq ($(GENCODE_FLAGS),)
# Generate SASS code for each SM architecture listed in $(SMS)
$(foreach sm,$(SMS),$(eval GENCODE_FLAGS += -gencode arch=compute_$(sm),code=sm_$(sm)))
# Generate PTX code from the highest SM architecture in $(SMS) to guarantee forward-compatibility
HIGHEST_SM := $(lastword $(sort $(SMS)))
ifneq ($(HIGHEST_SM),)
GENCODE_FLAGS += -gencode arch=compute_$(HIGHEST_SM),code=compute_$(HIGHEST_SM)
endif
endif
ALL_CCFLAGS += --std=c++11 --threads 0
LIBRARIES += -lcudla
ifeq ($(SAMPLE_ENABLED),0)
EXEC ?= @echo "[@]"
endif
################################################################################
# Target rules
all: build
build: cuDLALayerwiseStatsHybrid
check.deps:
ifeq ($(SAMPLE_ENABLED),0)
@echo "Sample will be waived due to the above missing dependencies"
else
@echo "Sample is ready - all dependencies have been met"
endif
main.o:main.cu
$(EXEC) $(NVCC) $(INCLUDES) $(ALL_CCFLAGS) $(GENCODE_FLAGS) -o $@ -c $<
cuDLALayerwiseStatsHybrid: main.o
$(EXEC) $(NVCC) $(ALL_LDFLAGS) $(GENCODE_FLAGS) -o $@ $+ $(LIBRARIES)
$(EXEC) mkdir -p ../../../bin/$(TARGET_ARCH)/$(TARGET_OS)/$(BUILD_TYPE)
$(EXEC) cp $@ ../../../bin/$(TARGET_ARCH)/$(TARGET_OS)/$(BUILD_TYPE)
run: build
$(EXEC) ./cuDLALayerwiseStatsHybrid
testrun: build
clean:
rm -f cuDLALayerwiseStatsHybrid main.o
rm -rf ../../../bin/$(TARGET_ARCH)/$(TARGET_OS)/$(BUILD_TYPE)/cuDLALayerwiseStatsHybrid
clobber: clean

View File

@ -0,0 +1,71 @@
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE entry SYSTEM "SamplesInfo.dtd">
<entry>
<name>cuDLALayerwiseStatsHybrid</name>
<cflags>
<flag>--std=c++11</flag>
</cflags>
<cuda_api_list>
<toolkit>cudaStreamCreateWithFlags</toolkit>
<toolkit>cudaStreamDestroy</toolkit>
<toolkit>cudaFree</toolkit>
<toolkit>cudaGetErrorName</toolkit>
<toolkit>cudaSetDevice</toolkit>
<toolkit>cudaStreamSynchronize</toolkit>
<toolkit>cudaMalloc</toolkit>
<toolkit>cudaMemsetAsync</toolkit>
<toolkit>cudaMemcpyAsync</toolkit>
</cuda_api_list>
<description><![CDATA[This sample is used to provide layerwise statistics to the application in the cuDLA hybrid mode wherein DLA is programmed using CUDA.]]></description>
<devicecompilation>whole</devicecompilation>
<includepaths>
<path>./</path>
<path>../</path>
<path>../../../Common</path>
</includepaths>
<keyconcepts>
<concept level="basic">cuDLA</concept>
<concept level="advanced">Data Parallel Algorithms</concept>
<concept level="advanced">Image Processing</concept>
</keyconcepts>
<keywords>
<keyword>CUDA</keyword>
<keyword>CPP11</keyword>
</keywords>
<libraries>
<library>cudla</library>
</libraries>
<librarypaths>
</librarypaths>
<nsight_eclipse>true</nsight_eclipse>
<primary_file>main.cu</primary_file>
<scopes>
<scope>1:CUDA Advanced Topics</scope>
<scope>1:cuDLA</scope>
</scopes>
<sm-arch>sm60</sm-arch>
<sm-arch>sm61</sm-arch>
<sm-arch>sm70</sm-arch>
<sm-arch>sm72</sm-arch>
<sm-arch>sm75</sm-arch>
<sm-arch>sm80</sm-arch>
<sm-arch>sm86</sm-arch>
<sm-arch>sm87</sm-arch>
<sm-arch>sm89</sm-arch>
<sm-arch>sm90</sm-arch>
<supported_envs>
<env>
<arch>aarch64</arch>
<platform>linux</platform>
</env>
<env>
<arch>aarch64</arch>
<platform>qnx</platform>
</env>
</supported_envs>
<supported_sm_architectures>
<from>6.0</from>
</supported_sm_architectures>
<title>cuDLA Layerwise statistics HybridMode</title>
<type>exe</type>
</entry>

View File

@ -0,0 +1,60 @@
# cuDLALayerwiseStatsHybrid - cuDLA Layerwise statistics HybridMode
## Description
This sample is used to provide layerwise statistics to the application in the cuDLA hybrid mode wherein DLA is programmed using CUDA.
## Key Concepts
cuDLA, Data Parallel Algorithms, Image Processing
## Supported SM Architectures
[SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus) [SM 8.6 ](https://developer.nvidia.com/cuda-gpus) [SM 8.7 ](https://developer.nvidia.com/cuda-gpus) [SM 8.9 ](https://developer.nvidia.com/cuda-gpus) [SM 9.0 ](https://developer.nvidia.com/cuda-gpus)
## Supported OSes
Linux, QNX
## Supported CPU Architecture
aarch64
## CUDA APIs involved
### [CUDA Runtime API](http://docs.nvidia.com/cuda/cuda-runtime-api/index.html)
cudaStreamCreateWithFlags, cudaStreamDestroy, cudaFree, cudaGetErrorName, cudaSetDevice, cudaStreamSynchronize, cudaMalloc, cudaMemsetAsync, cudaMemcpyAsync
## Prerequisites
Download and install the [CUDA Toolkit 12.2](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
## Build and Run
### Linux
The Linux samples are built using makefiles. To use the makefiles, change the current directory to the sample directory you wish to build, and run make:
```
$ cd <sample_dir>
$ make
```
The samples makefiles can take advantage of certain options:
* **TARGET_ARCH=<arch>** - cross-compile targeting a specific architecture. Allowed architectures are aarch64.
By default, TARGET_ARCH is set to HOST_ARCH. On a x86_64 machine, not setting TARGET_ARCH is the equivalent of setting TARGET_ARCH=x86_64.<br/>
`$ make TARGET_ARCH=aarch64` <br/>
See [here](http://docs.nvidia.com/cuda/cuda-samples/index.html#cross-samples) for more details.
* **dbg=1** - build with debug symbols
```
$ make dbg=1
```
* **SMS="A B ..."** - override the SM architectures for which the sample will be built, where `"A B ..."` is a space-delimited list of SM architectures. For example, to generate SASS for SM 50 and SM 60, use `SMS="50 60"`.
```
$ make SMS="50 60"
```
* **HOST_COMPILER=<host_compiler>** - override the default g++ host compiler. See the [Linux Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#system-requirements) for a list of supported host compilers.
```
$ make HOST_COMPILER=g++
```
## References (for more details)

View File

@ -0,0 +1,898 @@
/* Copyright (c) 2023, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "cudla.h"
#include "cuda_runtime.h"
#include "cudlaExternalEtbl.hpp"
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <sys/stat.h>
#include <fstream>
#include <sstream>
#define MAX_FILENAME_LEN 200
#define RESERVED_SUFFIX_LEN 10
#define DPRINTF(...) printf(__VA_ARGS__)
static void printTensorDesc(cudlaModuleTensorDescriptor* tensorDesc) {
DPRINTF("\tTENSOR NAME : %s\n", tensorDesc->name);
DPRINTF("\tsize: %lu\n", tensorDesc->size);
DPRINTF("\tdims: [%lu, %lu, %lu, %lu]\n", tensorDesc->n, tensorDesc->c,
tensorDesc->h, tensorDesc->w);
DPRINTF("\tdata fmt: %d\n", tensorDesc->dataFormat);
DPRINTF("\tdata type: %d\n", tensorDesc->dataType);
DPRINTF("\tdata category: %d\n", tensorDesc->dataCategory);
DPRINTF("\tpixel fmt: %d\n", tensorDesc->pixelFormat);
DPRINTF("\tpixel mapping: %d\n", tensorDesc->pixelMapping);
DPRINTF("\tstride[0]: %d\n", tensorDesc->stride[0]);
DPRINTF("\tstride[1]: %d\n", tensorDesc->stride[1]);
DPRINTF("\tstride[2]: %d\n", tensorDesc->stride[2]);
DPRINTF("\tstride[3]: %d\n", tensorDesc->stride[3]);
}
typedef struct {
cudlaDevHandle devHandle;
cudlaModule moduleHandle;
unsigned char* loadableData;
cudaStream_t stream;
uint32_t numInputTensors;
uint32_t numOutputTensors;
uint32_t numOutputTaskStatistics;
unsigned char** inputBuffer;
unsigned char** outputBuffer;
unsigned char** statisticsOutputBuffer;
void** inputBufferGPU;
void** outputBufferGPU;
void** outputTaskStatisticsGPU;
void **csv;
cudlaModuleTensorDescriptor* inputTensorDesc;
cudlaModuleTensorDescriptor* outputTensorDesc;
cudlaModuleTensorDescriptor* outputTaskStatisticsDesc;
uint64_t** inputBufferRegisteredPtr;
uint64_t** outputBufferRegisteredPtr;
uint64_t** outputTaskStatisticsRegisteredPtr;
uint64_t** outputStatisticsBufferRegisteredPtr;
} ResourceList;
void cleanUp(ResourceList* resourceList);
void cleanUp(ResourceList* resourceList) {
uint32_t ii = 0;
if (resourceList->inputTensorDesc != NULL) {
free(resourceList->inputTensorDesc);
resourceList->inputTensorDesc = NULL;
}
if (resourceList->outputTensorDesc != NULL) {
free(resourceList->outputTensorDesc);
resourceList->outputTensorDesc = NULL;
}
if (resourceList->outputTaskStatisticsDesc != NULL) {
free(resourceList->outputTaskStatisticsDesc);
resourceList->outputTaskStatisticsDesc = NULL;
}
if (resourceList->loadableData != NULL) {
free(resourceList->loadableData);
resourceList->loadableData = NULL;
}
if (resourceList->moduleHandle != NULL) {
cudlaModuleUnload(resourceList->moduleHandle, 0);
resourceList->moduleHandle = NULL;
}
if (resourceList->devHandle != NULL) {
cudlaDestroyDevice(resourceList->devHandle);
resourceList->devHandle = NULL;
}
if (resourceList->inputBufferGPU != NULL) {
for (ii = 0; ii < resourceList->numInputTensors; ii++) {
if ((resourceList->inputBufferGPU)[ii] != NULL) {
cudaFree((resourceList->inputBufferGPU)[ii]);
(resourceList->inputBufferGPU)[ii] = NULL;
}
}
free(resourceList->inputBufferGPU);
resourceList->inputBufferGPU = NULL;
}
if (resourceList->outputBufferGPU != NULL) {
for (ii = 0; ii < resourceList->numOutputTensors; ii++) {
if ((resourceList->outputBufferGPU)[ii] != NULL) {
cudaFree((resourceList->outputBufferGPU)[ii]);
(resourceList->outputBufferGPU)[ii] = NULL;
}
}
free(resourceList->outputBufferGPU);
resourceList->outputBufferGPU = NULL;
}
if (resourceList->outputTaskStatisticsGPU != NULL) {
for (ii = 0; ii < resourceList->numOutputTaskStatistics; ii++) {
if ((resourceList->outputTaskStatisticsGPU)[ii] != NULL) {
cudaFree((resourceList->outputTaskStatisticsGPU)[ii]);
(resourceList->outputTaskStatisticsGPU)[ii] = NULL;
}
}
free(resourceList->outputTaskStatisticsGPU);
resourceList->outputTaskStatisticsGPU = NULL;
}
if (resourceList->csv != NULL) {
for (ii = 0; ii < resourceList->numOutputTaskStatistics; ii++) {
if ((resourceList->csv)[ii] != NULL)
{
free((resourceList->csv)[ii]);
(resourceList->csv)[ii] = NULL;
}
}
free(resourceList->csv);
resourceList->csv = NULL;
}
if (resourceList->inputBuffer != NULL) {
for (ii = 0; ii < resourceList->numInputTensors; ii++) {
if ((resourceList->inputBuffer)[ii] != NULL) {
free((resourceList->inputBuffer)[ii]);
(resourceList->inputBuffer)[ii] = NULL;
}
}
free(resourceList->inputBuffer);
resourceList->inputBuffer = NULL;
}
if (resourceList->outputBuffer != NULL) {
for (ii = 0; ii < resourceList->numOutputTensors; ii++) {
if ((resourceList->outputBuffer)[ii] != NULL)
{
free((resourceList->outputBuffer)[ii]);
(resourceList->outputBuffer)[ii] = NULL;
}
}
free(resourceList->outputBuffer);
resourceList->outputBuffer = NULL;
}
if (resourceList->statisticsOutputBuffer != NULL) {
for (ii = 0; ii < resourceList->numOutputTaskStatistics; ii++) {
if ((resourceList->statisticsOutputBuffer)[ii] != NULL) {
free((resourceList->statisticsOutputBuffer)[ii]);
(resourceList->statisticsOutputBuffer)[ii] = NULL;
}
}
free(resourceList->statisticsOutputBuffer);
resourceList->statisticsOutputBuffer = NULL;
}
if (resourceList->stream != NULL) {
cudaStreamDestroy(resourceList->stream);
resourceList->stream = NULL;
}
if (resourceList->inputBufferRegisteredPtr != NULL) {
free(resourceList->inputBufferRegisteredPtr);
resourceList->inputBufferRegisteredPtr = NULL;
}
if (resourceList->outputBufferRegisteredPtr != NULL) {
free(resourceList->outputBufferRegisteredPtr);
resourceList->outputBufferRegisteredPtr = NULL;
}
if (resourceList->outputTaskStatisticsRegisteredPtr != NULL) {
free(resourceList->outputTaskStatisticsRegisteredPtr);
resourceList->outputTaskStatisticsRegisteredPtr = NULL;
}
if (resourceList->outputStatisticsBufferRegisteredPtr != NULL) {
free(resourceList->outputStatisticsBufferRegisteredPtr);
resourceList->outputStatisticsBufferRegisteredPtr = NULL;
}
resourceList->numInputTensors = 0;
resourceList->numOutputTensors = 0;
resourceList->numOutputTaskStatistics = 0;
}
int main(int argc, char** argv) {
cudlaDevHandle devHandle;
cudlaModule moduleHandle;
cudlaStatus err;
uint32_t statSupport = 0;
uint32_t dlaFreqInMHz = 0;
FILE* fp = NULL;
struct stat st;
size_t file_size;
size_t actually_read = 0;
unsigned char *loadableData = NULL;
char filename[MAX_FILENAME_LEN];
const char* suffix = ".csv";
cudaStream_t stream;
cudaError_t result;
const char* errPtr = NULL;
ResourceList resourceList;
memset(&resourceList, 0x00, sizeof(ResourceList));
if ((argc != 4) && (argc != 5)) {
DPRINTF("Usage : ./test_cudla_layerwise_stats_L0_hybrid_test1 <loadable> <freqMHZ> <statSupport> <filename prefix>\n");
return 1;
}
if (argc == 5) {
if((strlen(argv[4])) > (MAX_FILENAME_LEN - RESERVED_SUFFIX_LEN))
{
DPRINTF("Filename prefix length is too big, greater than maximum permissible prefix length of %u \n",(MAX_FILENAME_LEN - RESERVED_SUFFIX_LEN));
return 1;
}
}
// Read loadable into buffer.
fp = fopen(argv[1], "rb");
if (fp == NULL) {
DPRINTF("Cannot open file %s\n", argv[1]);
return 1;
}
if (stat(argv[1], &st) != 0) {
DPRINTF("Cannot stat file\n");
return 1;
}
file_size = st.st_size;
DPRINTF("The file size = %ld\n", file_size);
dlaFreqInMHz = atoi(argv[2]);
statSupport = atoi(argv[3]);
loadableData = (unsigned char *)malloc(file_size);
if (loadableData == NULL) {
DPRINTF("Cannot Allocate memory for loadable\n");
return 1;
}
actually_read = fread(loadableData, 1, file_size, fp);
if ( actually_read != file_size ) {
free(loadableData);
DPRINTF("Read wrong size\n");
return 1;
}
fclose(fp);
resourceList.loadableData = loadableData;
// Initialize CUDA.
result = cudaFree(0);
if (result != cudaSuccess) {
errPtr = cudaGetErrorName(result);
DPRINTF("Error in creating cudaFree = %s\n", errPtr);
cleanUp(&resourceList);
return 1;
}
result = cudaSetDevice(0);
if (result != cudaSuccess) {
errPtr = cudaGetErrorName(result);
DPRINTF("Error in creating cudaSetDevice = %s\n", errPtr);
cleanUp(&resourceList);
return 1;
}
err = cudlaCreateDevice(0, &devHandle, CUDLA_CUDA_DLA);
if (err != cudlaSuccess) {
DPRINTF("Error in cuDLA create device = %d\n", err);
cleanUp(&resourceList);
return 1;
}
DPRINTF("Device created successfully\n");
resourceList.devHandle = devHandle;
err = cudlaModuleLoadFromMemory(devHandle, loadableData, file_size, &moduleHandle, 0);
if (err != cudlaSuccess) {
DPRINTF("Error in cudlaModuleLoadFromMemory = %d\n", err);
cleanUp(&resourceList);
return 1;
} else {
DPRINTF("Successfully loaded module\n");
}
resourceList.moduleHandle = moduleHandle;
// Create CUDA stream.
result = cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking);
if (result != cudaSuccess) {
errPtr = cudaGetErrorName(result);
DPRINTF("Error in creating cuda stream = %s\n", errPtr);
cleanUp(&resourceList);
return 1;
}
resourceList.stream = stream;
// Get tensor attributes.
uint32_t numInputTensors = 0;
uint32_t numOutputTensors = 0;
uint32_t numOutputTaskStatistics = 0;
cudlaModuleAttribute attribute;
err = cudlaModuleGetAttributes(moduleHandle, CUDLA_NUM_INPUT_TENSORS, &attribute);
if (err != cudlaSuccess) {
DPRINTF("Error in getting numInputTensors = %d\n", err);
cleanUp(&resourceList);
return 1;
}
numInputTensors = attribute.numInputTensors;
DPRINTF("numInputTensors = %d\n", numInputTensors);
err = cudlaModuleGetAttributes(moduleHandle, CUDLA_NUM_OUTPUT_TENSORS, &attribute);
if (err != cudlaSuccess) {
DPRINTF("Error in getting numOutputTensors = %d\n", err);
cleanUp(&resourceList);
return 1;
}
numOutputTensors = attribute.numOutputTensors;
DPRINTF("numOutputTensors = %d\n", numOutputTensors);
// using the same attributes to get num_output_task_statistics_tensors
attribute.numOutputTensors = 0;
err = cudlaModuleGetAttributes(moduleHandle, CUDLA_NUM_OUTPUT_TASK_STATISTICS, &attribute);
if (err != cudlaSuccess) {
DPRINTF("Error in getting numOutputTensors = %d\n", err);
cleanUp(&resourceList);
return 1;
}
numOutputTaskStatistics = attribute.numOutputTensors;
DPRINTF("numOutputTaskStatistics = %d\n", numOutputTaskStatistics);
if(numOutputTaskStatistics == 0) {
DPRINTF("Layerwise stats is not supported for this Loadable \n");
cleanUp(&resourceList);
return 1;
}
resourceList.numInputTensors = numInputTensors;
resourceList.numOutputTensors = numOutputTensors;
resourceList.numOutputTaskStatistics = numOutputTaskStatistics;
cudlaModuleTensorDescriptor* inputTensorDesc =
(cudlaModuleTensorDescriptor*)malloc(sizeof(cudlaModuleTensorDescriptor)*numInputTensors);
cudlaModuleTensorDescriptor* outputTensorDesc =
(cudlaModuleTensorDescriptor*)malloc(sizeof(cudlaModuleTensorDescriptor)*numOutputTensors);
if ((inputTensorDesc == NULL) || (outputTensorDesc == NULL)) {
if (inputTensorDesc != NULL) {
free(inputTensorDesc);
inputTensorDesc = NULL;
}
if (outputTensorDesc != NULL) {
free(outputTensorDesc);
outputTensorDesc = NULL;
}
cleanUp(&resourceList);
return 1;
}
resourceList.inputTensorDesc = inputTensorDesc;
resourceList.outputTensorDesc = outputTensorDesc;
cudlaModuleTensorDescriptor* outputTaskStatisticsDesc =
(cudlaModuleTensorDescriptor*)malloc(sizeof(cudlaModuleTensorDescriptor)*numOutputTaskStatistics);
if (outputTaskStatisticsDesc == NULL) {
free(outputTaskStatisticsDesc);
outputTaskStatisticsDesc = NULL;
cleanUp(&resourceList);
return 1;
}
resourceList.outputTaskStatisticsDesc = outputTaskStatisticsDesc;
attribute.inputTensorDesc = inputTensorDesc;
err = cudlaModuleGetAttributes(moduleHandle,
CUDLA_INPUT_TENSOR_DESCRIPTORS,
&attribute);
if (err != cudlaSuccess) {
DPRINTF("Error in getting input tensor descriptor = %d\n", err);
cleanUp(&resourceList);
return 1;
}
DPRINTF("Printing input tensor descriptor\n");
printTensorDesc(inputTensorDesc);
attribute.outputTensorDesc = outputTensorDesc;
err = cudlaModuleGetAttributes(moduleHandle,
CUDLA_OUTPUT_TENSOR_DESCRIPTORS,
&attribute);
if (err != cudlaSuccess) {
DPRINTF("Error in getting output tensor descriptor = %d\n", err);
cleanUp(&resourceList);
return 1;
}
DPRINTF("Printing output tensor descriptor\n");
printTensorDesc(outputTensorDesc);
attribute.outputTensorDesc = outputTaskStatisticsDesc;
err = cudlaModuleGetAttributes(moduleHandle,
CUDLA_OUTPUT_TASK_STATISTICS_DESCRIPTORS,
&attribute);
if (err != cudlaSuccess) {
DPRINTF("Error in getting task statistics descriptor = %d\n", err);
cleanUp(&resourceList);
return 1;
}
DPRINTF("Printing output task statistics descriptor size\n");
for (uint32_t ii = 0; ii < numOutputTaskStatistics; ii++) {
DPRINTF("The size of %u descriptor is %lu\n", ii,outputTaskStatisticsDesc[ii].size);
}
// Setup the input and output buffers which will be used as an input to CUDA.
unsigned char** inputBuffer = (unsigned char **)malloc(sizeof(unsigned char *)*numInputTensors);
if (inputBuffer == NULL) {
DPRINTF("Error in allocating memory for input buffer array\n");
cleanUp(&resourceList);
return 1;
}
memset(inputBuffer, 0x00, sizeof(unsigned char *)*numInputTensors);
resourceList.inputBuffer = inputBuffer;
for (uint32_t ii = 0; ii < numInputTensors; ii++) {
inputBuffer[ii] = (unsigned char* )malloc(inputTensorDesc[ii].size);
if (inputBuffer[ii] == NULL) {
DPRINTF("Error in allocating input memory\n");
cleanUp(&resourceList);
return 1;
}
memset(inputBuffer[ii], 0x01, inputTensorDesc[ii].size);
}
unsigned char** outputBuffer = (unsigned char **)malloc(sizeof(unsigned char *)*numOutputTensors);
if (outputBuffer == NULL) {
DPRINTF("Error in allocating memory for output buffer array\n");
cleanUp(&resourceList);
return 1;
}
memset(outputBuffer, 0x00, sizeof(unsigned char *)*numOutputTensors);
resourceList.outputBuffer = outputBuffer;
for (uint32_t ii = 0; ii < numOutputTensors; ii++) {
outputBuffer[ii] = (unsigned char* )malloc(outputTensorDesc[ii].size);
if (outputBuffer[ii] == NULL) {
DPRINTF("Error in allocating output memory\n");
cleanUp(&resourceList);
return 1;
}
memset(outputBuffer[ii], 0x00, outputTensorDesc[ii].size);
}
unsigned char** statisticsOutputBuffer = (unsigned char **)malloc(sizeof(unsigned char *)*numOutputTaskStatistics);
if (statisticsOutputBuffer == NULL) {
DPRINTF("Error in allocating memory for output buffer array\n");
cleanUp(&resourceList);
return 1;
}
memset(statisticsOutputBuffer, 0x00, sizeof(unsigned char *)*numOutputTaskStatistics);
resourceList.statisticsOutputBuffer = statisticsOutputBuffer;
for (uint32_t ii = 0; ii < numOutputTaskStatistics; ii++) {
statisticsOutputBuffer[ii] = (unsigned char* )malloc(outputTaskStatisticsDesc[ii].size);
if (outputBuffer[ii] == NULL) {
DPRINTF("Error in allocating output memory\n");
cleanUp(&resourceList);
return 1;
}
memset(statisticsOutputBuffer[ii], 0x00, outputTaskStatisticsDesc[ii].size);
}
// Allocate memory on GPU.
void** inputBufferGPU = (void **)malloc(sizeof(void *)*numInputTensors);
if (inputBufferGPU == NULL) {
DPRINTF("Error in allocating memory for input buffer GPU array\n");
cleanUp(&resourceList);
return 1;
}
memset(inputBufferGPU, 0x00, sizeof(void *)*numInputTensors);
resourceList.inputBufferGPU = inputBufferGPU;
for (uint32_t ii = 0; ii < numInputTensors; ii++) {
result = cudaMalloc(&(inputBufferGPU[ii]), inputTensorDesc[ii].size);
if (result != cudaSuccess)
{
DPRINTF("Error in allocating input memory on GPU\n");
cleanUp(&resourceList);
return 1;
}
}
void** outputBufferGPU = (void **)malloc(sizeof(void *)*numOutputTensors);
if (outputBufferGPU == NULL) {
DPRINTF("Error in allocating memory for output buffer GPU array\n");
cleanUp(&resourceList);
return 1;
}
memset(outputBufferGPU, 0x00, sizeof(void *)*numOutputTensors);
resourceList.outputBufferGPU = outputBufferGPU;
for (uint32_t ii = 0; ii < numOutputTensors; ii++) {
result = cudaMalloc(&(outputBufferGPU[ii]), outputTensorDesc[ii].size);
if (result != cudaSuccess) {
DPRINTF("Error in allocating output memory on GPU\n");
cleanUp(&resourceList);
return 1;
}
}
void** outputTaskStatisticsGPU = (void **)malloc(sizeof(void *)*numOutputTaskStatistics);
if (outputTaskStatisticsGPU == NULL) {
DPRINTF("Error in allocating memory for output task statistics GPU array\n");
cleanUp(&resourceList);
return 1;
}
memset(outputTaskStatisticsGPU, 0x00, sizeof(void *)*numOutputTaskStatistics);
resourceList.outputTaskStatisticsGPU = outputTaskStatisticsGPU;
for (uint32_t ii = 0; ii < numOutputTaskStatistics; ii++) {
result = cudaMalloc(&(outputTaskStatisticsGPU[ii]), outputTaskStatisticsDesc[ii].size);
if (result != cudaSuccess) {
DPRINTF("Error in allocating task statistics memory on GPU\n");
cleanUp(&resourceList);
return 1;
}
}
uint64_t** inputBufferRegisteredPtr = (uint64_t **)malloc(sizeof(uint64_t*)*numInputTensors);
uint64_t** outputBufferRegisteredPtr = (uint64_t **)malloc(sizeof(uint64_t*)*numOutputTensors);
uint64_t** outputTaskStatisticsRegisteredPtr = (uint64_t **)malloc(sizeof(uint64_t*)*numOutputTaskStatistics);
if ((inputBufferRegisteredPtr == NULL) || (outputBufferRegisteredPtr == NULL) || (outputTaskStatisticsRegisteredPtr == NULL)) {
if (inputBufferRegisteredPtr != NULL) {
free(inputBufferRegisteredPtr);
inputBufferRegisteredPtr = NULL;
}
if (outputBufferRegisteredPtr != NULL) {
free(outputBufferRegisteredPtr);
outputBufferRegisteredPtr = NULL;
}
if (outputTaskStatisticsRegisteredPtr != NULL) {
free(outputTaskStatisticsRegisteredPtr);
outputTaskStatisticsRegisteredPtr = NULL;
}
cleanUp(&resourceList);
return 1;
}
resourceList.inputBufferRegisteredPtr = inputBufferRegisteredPtr;
resourceList.outputBufferRegisteredPtr = outputBufferRegisteredPtr;
resourceList.outputTaskStatisticsRegisteredPtr = outputTaskStatisticsRegisteredPtr;
// Register the CUDA-allocated buffers.
for (uint32_t ii = 0; ii < numInputTensors; ii++) {
err = cudlaMemRegister(devHandle,
(uint64_t* )(inputBufferGPU[ii]),
inputTensorDesc[ii].size,
&(inputBufferRegisteredPtr[ii]),
0);
if (err != cudlaSuccess) {
DPRINTF("Error in registering input memory = %d\n", err);
cleanUp(&resourceList);
return 1;
}
}
for (uint32_t ii = 0; ii < numOutputTensors; ii++) {
err = cudlaMemRegister(devHandle,
(uint64_t* )(outputBufferGPU[ii]),
outputTensorDesc[ii].size,
&(outputBufferRegisteredPtr[ii]),
0);
if (err != cudlaSuccess) {
DPRINTF("Error in registering output memory = %d\n", err);
cleanUp(&resourceList);
return 1;
}
}
for (uint32_t ii = 0; ii < numOutputTaskStatistics; ii++) {
err = cudlaMemRegister(devHandle,
(uint64_t* )(outputTaskStatisticsGPU[ii]),
outputTaskStatisticsDesc[ii].size,
&(outputTaskStatisticsRegisteredPtr[ii]),
CUDLA_TASK_STATISTICS);
if (err != cudlaSuccess) {
DPRINTF("Error in registering statistics output memory = %d\n", err);
cleanUp(&resourceList);
return 1;
}
}
DPRINTF("ALL MEMORY REGISTERED SUCCESSFULLY\n");
// Copy data from CPU buffers to GPU buffers.
for (uint32_t ii = 0; ii < numInputTensors; ii++) {
result = cudaMemcpyAsync(inputBufferGPU[ii], inputBuffer[ii], inputTensorDesc[ii].size, cudaMemcpyHostToDevice, stream);
if (result != cudaSuccess) {
DPRINTF("Error in enqueueing memcpy for input\n");
cleanUp(&resourceList);
return 1;
}
}
for (uint32_t ii = 0; ii < numOutputTensors; ii++) {
result = cudaMemsetAsync(outputBufferGPU[ii], 0, outputTensorDesc[ii].size, stream);
if (result != cudaSuccess) {
DPRINTF("Error in enqueueing memset for output\n");
cleanUp(&resourceList);
return 1;
}
}
for (uint32_t ii = 0; ii < numOutputTaskStatistics; ii++) {
result = cudaMemsetAsync(outputTaskStatisticsGPU[ii], 0, outputTaskStatisticsDesc[ii].size, stream);
if (result != cudaSuccess) {
DPRINTF("Error in enqueueing memset for statistics output\n");
cleanUp(&resourceList);
return 1;
}
}
uint64_t *outputStatisticsBufferRegisteredPtr[numOutputTensors + numOutputTaskStatistics] = {0};
uint32_t index = 0;
for (; index < numOutputTensors ; index++) {
outputStatisticsBufferRegisteredPtr[index] = ((outputBufferRegisteredPtr[index]));
}
for (uint32_t jj=0; jj < numOutputTaskStatistics ; jj++) {
outputStatisticsBufferRegisteredPtr[index++] = ((outputTaskStatisticsRegisteredPtr[jj]));
}
// Enqueue a cuDLA task.
cudlaTask task;
task.moduleHandle = moduleHandle;
task.outputTensor = (uint64_t * const*)&outputStatisticsBufferRegisteredPtr;
if(statSupport == 1) {
task.numOutputTensors = (numOutputTensors + numOutputTaskStatistics);
DPRINTF("Layerwise profiling is requested \n");
} else {
task.numOutputTensors = numOutputTensors;
DPRINTF("Layerwise profiling is not requested \n");
}
task.numInputTensors = numInputTensors;
task.inputTensor = inputBufferRegisteredPtr;
task.waitEvents = NULL;
task.signalEvents = NULL;
err = cudlaSubmitTask(devHandle, &task, 1, stream, 0);
if (err != cudlaSuccess) {
DPRINTF("no of output tensor %u \n",(task.numOutputTensors));
DPRINTF("Error in submitting task\n");
cleanUp(&resourceList);
return 1;
}
DPRINTF("SUBMIT IS DONE !!!\n");
result = cudaStreamSynchronize(stream);
if (result != cudaSuccess) {
DPRINTF("Error in synchronizing stream = %s\n", cudaGetErrorName(result));
cleanUp(&resourceList);
return 1;
}
// Wait for stream operations to finish and bring output buffer to CPU.
for (uint32_t ii = 0; ii < numOutputTensors; ii++) {
result = cudaMemcpyAsync(outputBuffer[ii], outputBufferGPU[ii],
outputTensorDesc[ii].size, cudaMemcpyDeviceToHost, stream);
if (result != cudaSuccess) {
DPRINTF("Error in bringing result back to CPU\n");
cleanUp(&resourceList);
return 1;
}
}
result = cudaStreamSynchronize(stream);
if (result != cudaSuccess) {
DPRINTF("Error in synchronizing stream\n");
cleanUp(&resourceList);
return 1;
}
if(statSupport == 1) {
// copy statistics data to cpu
for (uint32_t ii = 0; ii < numOutputTaskStatistics; ii++) {
result = cudaMemcpyAsync(statisticsOutputBuffer[ii], outputTaskStatisticsGPU[ii],
outputTaskStatisticsDesc[ii].size, cudaMemcpyDeviceToHost, stream);
if (result != cudaSuccess) {
DPRINTF("Error in bringing result back to CPU\n");
cleanUp(&resourceList);
return 1;
}
}
result = cudaStreamSynchronize(stream);
if (result != cudaSuccess) {
DPRINTF("Error in synchronizing stream\n");
cleanUp(&resourceList);
return 1;
}
// To get the last index of the filename prefix in which statistics will be dumped
uint32_t index = 0;
if (argc == 5) {
while(argv[4][index]!='\0') {
index++;
}
}
const cudlaExternalEtbl* etbl = NULL;
if (cudlaGetExternalExportTable(&etbl,0) != cudlaSuccess) {
DPRINTF("Error in getting export table\n");
cleanUp(&resourceList);
return 1;
}
void** csv = (void **)malloc(sizeof(void *)*numOutputTaskStatistics);
if (csv == NULL) {
DPRINTF("Error in allocating memory for csv stream\n");
cleanUp(&resourceList);
return 1;
}
memset(csv, 0x00, sizeof(void *)*numOutputTaskStatistics);
resourceList.csv = csv;
for (uint32_t ii = 0; ii < numOutputTaskStatistics; ii++) {
cudlaTranslateCsvAttribute csvAttribute;
uint64_t csvStreamLength = 0;
err = etbl->etiTranslateStats(devHandle,statisticsOutputBuffer[ii],dlaFreqInMHz,ii,CUDLA_GET_CSV_LENGTH,&csvAttribute);
csv[ii] = (void* )malloc(csvAttribute.csvStreamLength);
csvStreamLength = csvAttribute.csvStreamLength;
DPRINTF("size for statistics buffer %u is %lu \n",ii,csvStreamLength);
if (csv[ii] == NULL) {
DPRINTF("Error in allocating memory for csv stream\n");
cleanUp(&resourceList);
return 1;
}
memset(csv[ii], 0x00, csvAttribute.csvStreamLength);
csvAttribute.csvStreamStats = csv[ii];
err = etbl->etiTranslateStats(devHandle,statisticsOutputBuffer[ii],dlaFreqInMHz,ii,CUDLA_GET_CSV_STATS,&csvAttribute);
if (err != cudlaSuccess) {
DPRINTF("Error in translating stats\n");
cleanUp(&resourceList);
return 1;
}
if (argc == 5) {
sprintf(filename,"%s%u%s", argv[4],(ii+1),suffix);
fp = fopen(filename, "w+");
if (fp == NULL) {
DPRINTF("Cannot open file %s\n", filename);
cleanUp(&resourceList);
return 1;
}
uint32_t ret_val = fwrite(csv[ii],sizeof(char),csvStreamLength,fp);
if(ret_val != csvStreamLength) {
DPRINTF("number of elements written to file is %u \n", ret_val);
cleanUp(&resourceList);
return 1;
}
fclose(fp);
} else {
DPRINTF("%s \n",(char *)csv[ii]);
}
}
}
// unregister the CUDA-allocated buffers.
for (uint32_t ii = 0; ii < numInputTensors; ii++) {
err = cudlaMemUnregister(devHandle,
(inputBufferRegisteredPtr[ii]));
if (err != cudlaSuccess) {
DPRINTF("Error in registering input memory = %d\n", err);
cleanUp(&resourceList);
return 1;
}
}
for (uint32_t ii = 0; ii < numOutputTensors; ii++) {
err = cudlaMemUnregister(devHandle,
(outputBufferRegisteredPtr[ii]));
if (err != cudlaSuccess) {
DPRINTF("Error in registering output memory = %d\n", err);
cleanUp(&resourceList);
return 1;
}
}
for (uint32_t ii = 0; ii < numOutputTaskStatistics; ii++) {
err = cudlaMemUnregister(devHandle,
(outputTaskStatisticsRegisteredPtr[ii]));
if (err != cudlaSuccess) {
DPRINTF("Error in registering output memory = %d\n", err);
cleanUp(&resourceList);
return 1;
}
}
DPRINTF("ALL MEMORY UNREGISTERED SUCCESSFULLY\n");
result = cudaStreamDestroy(stream);
if (result != cudaSuccess) {
errPtr = cudaGetErrorName(result);
DPRINTF("Error in destroying cuda stream = %s\n", errPtr);
cleanUp(&resourceList);
return 1;
}
resourceList.stream = NULL;
err = cudlaModuleUnload(moduleHandle, 0);
if (err != cudlaSuccess) {
DPRINTF("Error in cudlaModuleUnload = %d\n", err);
cleanUp(&resourceList);
return 1;
} else {
DPRINTF("Successfully unloaded module\n");
}
resourceList.moduleHandle = NULL;
err = cudlaDestroyDevice(devHandle);
if (err != cudlaSuccess) {
DPRINTF("Error in cuDLA destroy device = %d\n", err);
return 1;
}
DPRINTF("Device destroyed successfully\n");
resourceList.devHandle = NULL;
cleanUp(&resourceList);
DPRINTF("cuDLALayerwiseStatsHybrid DONE !!!\n");
return 0;
}

View File

@ -0,0 +1,18 @@
{
"configurations": [
{
"name": "Linux",
"includePath": [
"${workspaceFolder}/**",
"${workspaceFolder}/../../../Common"
],
"defines": [],
"compilerPath": "/usr/local/cuda/bin/nvcc",
"cStandard": "gnu17",
"cppStandard": "gnu++14",
"intelliSenseMode": "linux-gcc-x64",
"configurationProvider": "ms-vscode.makefile-tools"
}
],
"version": 4
}

View File

@ -0,0 +1,7 @@
{
"recommendations": [
"nvidia.nsight-vscode-edition",
"ms-vscode.cpptools",
"ms-vscode.makefile-tools"
]
}

View File

@ -0,0 +1,10 @@
{
"configurations": [
{
"name": "CUDA C++: Launch",
"type": "cuda-gdb",
"request": "launch",
"program": "${workspaceFolder}/cuDLALayerwiseStatsStandalone"
}
]
}

View File

@ -0,0 +1,15 @@
{
"version": "2.0.0",
"tasks": [
{
"label": "sample",
"type": "shell",
"command": "make dbg=1",
"problemMatcher": ["$nvcc"],
"group": {
"kind": "build",
"isDefault": true
}
}
]
}

View File

@ -0,0 +1,403 @@
################################################################################
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
################################################################################
#
# Makefile project only supported on Mac OS X and Linux Platforms)
#
################################################################################
# Location of the CUDA Toolkit
CUDA_PATH ?= /usr/local/cuda
##############################
# start deprecated interface #
##############################
ifeq ($(x86_64),1)
$(info WARNING - x86_64 variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=x86_64 instead)
TARGET_ARCH ?= x86_64
endif
ifeq ($(ARMv7),1)
$(info WARNING - ARMv7 variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=armv7l instead)
TARGET_ARCH ?= armv7l
endif
ifeq ($(aarch64),1)
$(info WARNING - aarch64 variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=aarch64 instead)
TARGET_ARCH ?= aarch64
endif
ifeq ($(ppc64le),1)
$(info WARNING - ppc64le variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=ppc64le instead)
TARGET_ARCH ?= ppc64le
endif
ifneq ($(GCC),)
$(info WARNING - GCC variable has been deprecated)
$(info WARNING - please use HOST_COMPILER=$(GCC) instead)
HOST_COMPILER ?= $(GCC)
endif
ifneq ($(abi),)
$(error ERROR - abi variable has been removed)
endif
############################
# end deprecated interface #
############################
# architecture
HOST_ARCH := $(shell uname -m)
TARGET_ARCH ?= $(HOST_ARCH)
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le armv7l))
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le))
TARGET_SIZE := 64
else ifneq (,$(filter $(TARGET_ARCH),armv7l))
TARGET_SIZE := 32
endif
else
TARGET_SIZE := $(shell getconf LONG_BIT)
endif
else
$(error ERROR - unsupported value $(TARGET_ARCH) for TARGET_ARCH!)
endif
# sbsa and aarch64 systems look similar. Need to differentiate them at host level for now.
ifeq ($(HOST_ARCH),aarch64)
ifeq ($(CUDA_PATH)/targets/sbsa-linux,$(shell ls -1d $(CUDA_PATH)/targets/sbsa-linux 2>/dev/null))
HOST_ARCH := sbsa
TARGET_ARCH := sbsa
endif
endif
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq (,$(filter $(HOST_ARCH)-$(TARGET_ARCH),aarch64-armv7l x86_64-armv7l x86_64-aarch64 x86_64-sbsa x86_64-ppc64le))
$(error ERROR - cross compiling from $(HOST_ARCH) to $(TARGET_ARCH) is not supported!)
endif
endif
# When on native aarch64 system with userspace of 32-bit, change TARGET_ARCH to armv7l
ifeq ($(HOST_ARCH)-$(TARGET_ARCH)-$(TARGET_SIZE),aarch64-aarch64-32)
TARGET_ARCH = armv7l
endif
# operating system
HOST_OS := $(shell uname -s 2>/dev/null | tr "[:upper:]" "[:lower:]")
TARGET_OS ?= $(HOST_OS)
ifeq (,$(filter $(TARGET_OS),linux darwin qnx android))
$(error ERROR - unsupported value $(TARGET_OS) for TARGET_OS!)
endif
# host compiler
ifdef HOST_COMPILER
CUSTOM_HOST_COMPILER = 1
endif
ifeq ($(TARGET_OS),darwin)
ifeq ($(shell expr `xcodebuild -version | grep -i xcode | awk '{print $$2}' | cut -d'.' -f1` \>= 5),1)
HOST_COMPILER ?= clang++
endif
else ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq ($(HOST_ARCH)-$(TARGET_ARCH),x86_64-armv7l)
ifeq ($(TARGET_OS),linux)
HOST_COMPILER ?= arm-linux-gnueabihf-g++
else ifeq ($(TARGET_OS),qnx)
ifeq ($(QNX_HOST),)
$(error ERROR - QNX_HOST must be passed to the QNX host toolchain)
endif
ifeq ($(QNX_TARGET),)
$(error ERROR - QNX_TARGET must be passed to the QNX target toolchain)
endif
export QNX_HOST
export QNX_TARGET
HOST_COMPILER ?= $(QNX_HOST)/usr/bin/arm-unknown-nto-qnx6.6.0eabi-g++
else ifeq ($(TARGET_OS),android)
HOST_COMPILER ?= arm-linux-androideabi-g++
endif
else ifeq ($(TARGET_ARCH),aarch64)
ifeq ($(TARGET_OS), linux)
HOST_COMPILER ?= aarch64-linux-gnu-g++
else ifeq ($(TARGET_OS),qnx)
ifeq ($(QNX_HOST),)
$(error ERROR - QNX_HOST must be passed to the QNX host toolchain)
endif
ifeq ($(QNX_TARGET),)
$(error ERROR - QNX_TARGET must be passed to the QNX target toolchain)
endif
export QNX_HOST
export QNX_TARGET
HOST_COMPILER ?= $(QNX_HOST)/usr/bin/q++
else ifeq ($(TARGET_OS), android)
HOST_COMPILER ?= aarch64-linux-android-clang++
endif
else ifeq ($(TARGET_ARCH),sbsa)
HOST_COMPILER ?= aarch64-linux-gnu-g++
else ifeq ($(TARGET_ARCH),ppc64le)
HOST_COMPILER ?= powerpc64le-linux-gnu-g++
endif
endif
HOST_COMPILER ?= g++
NVCC := $(CUDA_PATH)/bin/nvcc -ccbin $(HOST_COMPILER)
# internal flags
NVCCFLAGS := -m${TARGET_SIZE}
CCFLAGS :=
LDFLAGS :=
# build flags
ifeq ($(TARGET_OS),darwin)
LDFLAGS += -rpath $(CUDA_PATH)/lib
CCFLAGS += -arch $(HOST_ARCH)
else ifeq ($(HOST_ARCH)-$(TARGET_ARCH)-$(TARGET_OS),x86_64-armv7l-linux)
LDFLAGS += --dynamic-linker=/lib/ld-linux-armhf.so.3
CCFLAGS += -mfloat-abi=hard
else ifeq ($(TARGET_OS),android)
LDFLAGS += -pie
CCFLAGS += -fpie -fpic -fexceptions
endif
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-linux)
ifneq ($(TARGET_FS),)
GCCVERSIONLTEQ46 := $(shell expr `$(HOST_COMPILER) -dumpversion` \<= 4.6)
ifeq ($(GCCVERSIONLTEQ46),1)
CCFLAGS += --sysroot=$(TARGET_FS)
endif
LDFLAGS += --sysroot=$(TARGET_FS)
LDFLAGS += -rpath-link=$(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/arm-linux-gnueabihf
endif
endif
ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-linux)
ifneq ($(TARGET_FS),)
GCCVERSIONLTEQ46 := $(shell expr `$(HOST_COMPILER) -dumpversion` \<= 4.6)
ifeq ($(GCCVERSIONLTEQ46),1)
CCFLAGS += --sysroot=$(TARGET_FS)
endif
LDFLAGS += --sysroot=$(TARGET_FS)
LDFLAGS += -rpath-link=$(TARGET_FS)/lib -L$(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/lib/aarch64-linux-gnu -L$(TARGET_FS)/lib/aarch64-linux-gnu
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib -L$(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/aarch64-linux-gnu -L$(TARGET_FS)/usr/lib/aarch64-linux-gnu
LDFLAGS += --unresolved-symbols=ignore-in-shared-libs
CCFLAGS += -isystem=$(TARGET_FS)/usr/include -I$(TARGET_FS)/usr/include -I$(TARGET_FS)/usr/include/libdrm
CCFLAGS += -isystem=$(TARGET_FS)/usr/include/aarch64-linux-gnu -I$(TARGET_FS)/usr/include/aarch64-linux-gnu
endif
endif
ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-qnx)
NVCCFLAGS += -D_QNX_SOURCE
NVCCFLAGS += --qpp-config 8.3.0,gcc_ntoaarch64le
CCFLAGS += -DWIN_INTERFACE_CUSTOM -I/usr/include/aarch64-qnx-gnu
LDFLAGS += -lsocket
LDFLAGS += -L/usr/lib/aarch64-qnx-gnu
CCFLAGS += "-Wl\,-rpath-link\,/usr/lib/aarch64-qnx-gnu"
ifdef TARGET_OVERRIDE
LDFLAGS += -lslog2
endif
ifneq ($(TARGET_FS),)
LDFLAGS += -L$(TARGET_FS)/usr/lib
CCFLAGS += "-Wl\,-rpath-link\,$(TARGET_FS)/usr/lib"
LDFLAGS += -L$(TARGET_FS)/usr/libnvidia
CCFLAGS += "-Wl\,-rpath-link\,$(TARGET_FS)/usr/libnvidia"
CCFLAGS += -I$(TARGET_FS)/../include
endif
endif
endif
ifdef TARGET_OVERRIDE # cuda toolkit targets override
NVCCFLAGS += -target-dir $(TARGET_OVERRIDE)
endif
# Install directory of different arch
CUDA_INSTALL_TARGET_DIR :=
ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-linux)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-gnueabihf/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-linux)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),sbsa-linux)
CUDA_INSTALL_TARGET_DIR = targets/sbsa-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-android)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-androideabi/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-android)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-linux-androideabi/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-qnx)
CUDA_INSTALL_TARGET_DIR = targets/ARMv7-linux-QNX/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-qnx)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-qnx/
else ifeq ($(TARGET_ARCH),ppc64le)
CUDA_INSTALL_TARGET_DIR = targets/ppc64le-linux/
endif
# Debug build flags
ifeq ($(dbg),1)
NVCCFLAGS += -g -G
BUILD_TYPE := debug
else
BUILD_TYPE := release
endif
ALL_CCFLAGS :=
ALL_CCFLAGS += $(NVCCFLAGS)
ALL_CCFLAGS += $(EXTRA_NVCCFLAGS)
ALL_CCFLAGS += $(addprefix -Xcompiler ,$(CCFLAGS))
ALL_CCFLAGS += $(addprefix -Xcompiler ,$(EXTRA_CCFLAGS))
SAMPLE_ENABLED := 1
# This sample is not supported on Linux x86_64
ifeq ($(TARGET_OS),linux)
ifeq ($(TARGET_ARCH),x86_64)
$(info >>> WARNING - cuDLALayerwiseStatsStandalone is not supported on Linux x86_64 - waiving sample <<<)
SAMPLE_ENABLED := 0
endif
endif
# This sample is not supported on Mac OSX
ifeq ($(TARGET_OS),darwin)
$(info >>> WARNING - cuDLALayerwiseStatsStandalone is not supported on Mac OSX - waiving sample <<<)
SAMPLE_ENABLED := 0
endif
# This sample is not supported on ARMv7
ifeq ($(TARGET_ARCH),armv7l)
$(info >>> WARNING - cuDLALayerwiseStatsStandalone is not supported on ARMv7 - waiving sample <<<)
SAMPLE_ENABLED := 0
endif
# This sample is not supported on sbsa
ifeq ($(TARGET_ARCH),sbsa)
$(info >>> WARNING - cuDLALayerwiseStatsStandalone is not supported on sbsa - waiving sample <<<)
SAMPLE_ENABLED := 0
endif
ALL_LDFLAGS :=
ALL_LDFLAGS += $(ALL_CCFLAGS)
ALL_LDFLAGS += $(addprefix -Xlinker ,$(LDFLAGS))
ALL_LDFLAGS += $(addprefix -Xlinker ,$(EXTRA_LDFLAGS))
# Common includes and paths for CUDA
INCLUDES := -I../../../Common
LIBRARIES :=
################################################################################
# Makefile include to help find NVSCI Libraries
include ./findnvsci.mk
#Detect if installed version of GCC supports required C++11
ifeq ($(TARGET_OS),linux)
empty :=
space := $(empty) $(empty)
GCCVERSIONSTRING := $(shell expr `$(HOST_COMPILER) -dumpversion`)
#Create version number without "."
GCCVERSION := $(shell expr `echo $(GCCVERSIONSTRING)` | cut -f1 -d.)
GCCVERSION += $(shell expr `echo $(GCCVERSIONSTRING)` | cut -f2 -d.)
GCCVERSION += $(shell expr `echo $(GCCVERSIONSTRING)` | cut -f3 -d.)
# Make sure the version number has at least 3 decimals
GCCVERSION += 00
# Remove spaces from the version number
GCCVERSION := $(subst $(space),$(empty),$(GCCVERSION))
#$(warning $(GCCVERSION))
IS_MIN_VERSION := $(shell expr `echo $(GCCVERSION)` \>= 47000)
ifneq ($(CUSTOM_HOST_COMPILER), 1)
ifeq ($(IS_MIN_VERSION), 1)
$(info >>> GCC Version is greater or equal to 4.7.0 <<<)
else
$(info >>> Waiving build. Minimum GCC version required is 4.7.0<<<)
SAMPLE_ENABLED := 0
endif
else
$(warning >>> Custom HOST_COMPILER set; skipping GCC version check. This may lead to unintended behavior. Please note the minimum equivalent GCC version is 4.7.0 <<<)
endif
endif
# Gencode arguments
ifeq ($(TARGET_ARCH),$(filter $(TARGET_ARCH),armv7l aarch64 sbsa))
SMS ?= 53 61 70 72 75 80 86 87 90
else
SMS ?= 50 52 60 61 70 75 80 86 89 90
endif
ifeq ($(SMS),)
$(info >>> WARNING - no SM architectures have been specified - waiving sample <<<)
SAMPLE_ENABLED := 0
endif
ifeq ($(GENCODE_FLAGS),)
# Generate SASS code for each SM architecture listed in $(SMS)
$(foreach sm,$(SMS),$(eval GENCODE_FLAGS += -gencode arch=compute_$(sm),code=sm_$(sm)))
# Generate PTX code from the highest SM architecture in $(SMS) to guarantee forward-compatibility
HIGHEST_SM := $(lastword $(sort $(SMS)))
ifneq ($(HIGHEST_SM),)
GENCODE_FLAGS += -gencode arch=compute_$(HIGHEST_SM),code=compute_$(HIGHEST_SM)
endif
endif
ALL_CCFLAGS += --std=c++11 --threads 0
LIBRARIES += -lcudla -lnvscibuf -lnvscisync
ifeq ($(SAMPLE_ENABLED),0)
EXEC ?= @echo "[@]"
endif
################################################################################
# Target rules
all: build
build: cuDLALayerwiseStatsStandalone
check.deps:
ifeq ($(SAMPLE_ENABLED),0)
@echo "Sample will be waived due to the above missing dependencies"
else
@echo "Sample is ready - all dependencies have been met"
endif
main.o:main.cpp
$(EXEC) $(NVCC) $(INCLUDES) $(ALL_CCFLAGS) $(GENCODE_FLAGS) -o $@ -c $<
cuDLALayerwiseStatsStandalone: main.o
$(EXEC) $(NVCC) $(ALL_LDFLAGS) $(GENCODE_FLAGS) -o $@ $+ $(LIBRARIES)
$(EXEC) mkdir -p ../../../bin/$(TARGET_ARCH)/$(TARGET_OS)/$(BUILD_TYPE)
$(EXEC) cp $@ ../../../bin/$(TARGET_ARCH)/$(TARGET_OS)/$(BUILD_TYPE)
run: build
$(EXEC) ./cuDLALayerwiseStatsStandalone
testrun: build
clean:
rm -f cuDLALayerwiseStatsStandalone main.o
rm -rf ../../../bin/$(TARGET_ARCH)/$(TARGET_OS)/$(BUILD_TYPE)/cuDLALayerwiseStatsStandalone
clobber: clean

View File

@ -0,0 +1,65 @@
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE entry SYSTEM "SamplesInfo.dtd">
<entry>
<name>cuDLALayerwiseStatsStandalone</name>
<cflags>
<flag>--std=c++11</flag>
</cflags>
<description><![CDATA[This sample is used to provide layerwise statistics to the application in cuDLA standalone mode where DLA is programmed without using CUDA.]]></description>
<devicecompilation>whole</devicecompilation>
<includepaths>
<path>./</path>
<path>../</path>
<path>../../../Common</path>
</includepaths>
<keyconcepts>
<concept level="basic">cuDLA</concept>
<concept level="advanced">Data Parallel Algorithms</concept>
<concept level="advanced">Image Processing</concept>
</keyconcepts>
<keywords>
<keyword>CUDA</keyword>
<keyword>CPP11</keyword>
</keywords>
<libraries>
<library>cudla</library>
<library>nvscibuf</library>
<library>nvscisync</library>
</libraries>
<librarypaths>
</librarypaths>
<nsight_eclipse>true</nsight_eclipse>
<primary_file>main.cpp</primary_file>
<required_dependencies>
<dependency>NVSCI</dependency>
</required_dependencies>
<scopes>
<scope>1:CUDA Advanced Topics</scope>
<scope>1:cuDLA</scope>
</scopes>
<sm-arch>sm60</sm-arch>
<sm-arch>sm61</sm-arch>
<sm-arch>sm70</sm-arch>
<sm-arch>sm72</sm-arch>
<sm-arch>sm75</sm-arch>
<sm-arch>sm80</sm-arch>
<sm-arch>sm86</sm-arch>
<sm-arch>sm87</sm-arch>
<sm-arch>sm89</sm-arch>
<sm-arch>sm90</sm-arch>
<supported_envs>
<env>
<arch>aarch64</arch>
<platform>linux</platform>
</env>
<env>
<arch>aarch64</arch>
<platform>qnx</platform>
</env>
</supported_envs>
<supported_sm_architectures>
<from>6.0</from>
</supported_sm_architectures>
<title>cuDLA Layerwise Statistics Standalone Mode</title>
<type>exe</type>
</entry>

View File

@ -0,0 +1,61 @@
# cuDLALayerwiseStatsStandalone - cuDLA Layerwise Statistics Standalone Mode
## Description
This sample is used to provide layerwise statistics to the application in cuDLA standalone mode where DLA is programmed without using CUDA.
## Key Concepts
cuDLA, Data Parallel Algorithms, Image Processing
## Supported SM Architectures
[SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus) [SM 8.6 ](https://developer.nvidia.com/cuda-gpus) [SM 8.7 ](https://developer.nvidia.com/cuda-gpus) [SM 8.9 ](https://developer.nvidia.com/cuda-gpus) [SM 9.0 ](https://developer.nvidia.com/cuda-gpus)
## Supported OSes
Linux, QNX
## Supported CPU Architecture
aarch64
## CUDA APIs involved
## Dependencies needed to build/run
[NVSCI](../../../README.md#nvsci)
## Prerequisites
Download and install the [CUDA Toolkit 12.2](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
Make sure the dependencies mentioned in [Dependencies]() section above are installed.
## Build and Run
### Linux
The Linux samples are built using makefiles. To use the makefiles, change the current directory to the sample directory you wish to build, and run make:
```
$ cd <sample_dir>
$ make
```
The samples makefiles can take advantage of certain options:
* **TARGET_ARCH=<arch>** - cross-compile targeting a specific architecture. Allowed architectures are aarch64.
By default, TARGET_ARCH is set to HOST_ARCH. On a x86_64 machine, not setting TARGET_ARCH is the equivalent of setting TARGET_ARCH=x86_64.<br/>
`$ make TARGET_ARCH=aarch64` <br/>
See [here](http://docs.nvidia.com/cuda/cuda-samples/index.html#cross-samples) for more details.
* **dbg=1** - build with debug symbols
```
$ make dbg=1
```
* **SMS="A B ..."** - override the SM architectures for which the sample will be built, where `"A B ..."` is a space-delimited list of SM architectures. For example, to generate SASS for SM 50 and SM 60, use `SMS="50 60"`.
```
$ make SMS="50 60"
```
* **HOST_COMPILER=<host_compiler>** - override the default g++ host compiler. See the [Linux Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#system-requirements) for a list of supported host compilers.
```
$ make HOST_COMPILER=g++
```
## References (for more details)

View File

@ -0,0 +1,144 @@
################################################################################
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
#################################################################################
# findnvsci.mk is used to find the NVSCI Libraries and headers
#
################################################################################
# Determine OS platform and unix distribution
ifeq ("$(TARGET_OS)","linux")
# first search lsb_release
DISTRO = $(shell lsb_release -i -s 2>/dev/null | tr "[:upper:]" "[:lower:]")
ifeq ("$(DISTRO)","")
# second search and parse /etc/issue
DISTRO = $(shell more /etc/issue | awk '{print $$1}' | sed '1!d' | sed -e "/^$$/d" 2>/dev/null | tr "[:upper:]" "[:lower:]")
# ensure data from /etc/issue is valid
ifeq (,$(filter $(DISTRO),ubuntu fedora red rhel centos suse))
DISTRO =
endif
ifeq ("$(DISTRO)","")
# third, we can search in /etc/os-release or /etc/{distro}-release
DISTRO = $(shell awk '/ID/' /etc/*-release | sed 's/ID=//' | grep -v "VERSION" | grep -v "ID" | grep -v "DISTRIB")
endif
endif
endif
ifeq ("$(TARGET_OS)","linux")
# $(info) >> findegl.mk -> LINUX path <<<)
# Each set of Linux Distros have different paths for where to find their OpenGL libraries reside
UBUNTU = $(shell echo $(DISTRO) | grep -i ubuntu >/dev/null 2>&1; echo $$?)
FEDORA = $(shell echo $(DISTRO) | grep -i fedora >/dev/null 2>&1; echo $$?)
RHEL = $(shell echo $(DISTRO) | grep -i 'red\|rhel' >/dev/null 2>&1; echo $$?)
CENTOS = $(shell echo $(DISTRO) | grep -i centos >/dev/null 2>&1; echo $$?)
SUSE = $(shell echo $(DISTRO) | grep -i 'suse\|sles' >/dev/null 2>&1; echo $$?)
KYLIN = $(shell echo $(DISTRO) | grep -i kylin >/dev/null 2>&1; echo $$?)
ifeq ("$(UBUNTU)","0")
ifeq ($(HOST_ARCH)-$(TARGET_ARCH),x86_64-armv7l)
GLPATH := /usr/arm-linux-gnueabihf/lib
GLLINK := -L/usr/arm-linux-gnueabihf/lib
ifneq ($(TARGET_FS),)
GLPATH += $(TARGET_FS)/usr/lib/arm-linux-gnueabihf
GLLINK += -L$(TARGET_FS)/usr/lib/arm-linux-gnueabihf
endif
else ifeq ($(HOST_ARCH)-$(TARGET_ARCH),x86_64-aarch64)
GLPATH := /usr/aarch64-linux-gnu/lib
GLLINK := -L/usr/aarch64-linux-gnu/lib
ifneq ($(TARGET_FS),)
GLPATH += $(TARGET_FS)/usr/lib
GLPATH += $(TARGET_FS)/usr/lib/aarch64-linux-gnu
GLLINK += -L$(TARGET_FS)/usr/lib/aarch64-linux-gnu
endif
else
UBUNTU_PKG_NAME = $(shell which dpkg >/dev/null 2>&1 && dpkg -l 'nvidia-*' | grep '^ii' | awk '{print $$2}' | head -1)
ifneq ("$(UBUNTU_PKG_NAME)","")
GLPATH ?= /usr/lib/$(UBUNTU_PKG_NAME)
GLLINK ?= -L/usr/lib/$(UBUNTU_PKG_NAME)
endif
DFLT_PATH ?= /usr/lib
endif
endif
ifeq ("$(SUSE)","0")
GLPATH ?= /usr/X11R6/lib64
GLLINK ?= -L/usr/X11R6/lib64
DFLT_PATH ?= /usr/lib64
endif
ifeq ("$(FEDORA)","0")
GLPATH ?= /usr/lib64/nvidia
GLLINK ?= -L/usr/lib64/nvidia
DFLT_PATH ?= /usr/lib64
endif
ifeq ("$(RHEL)","0")
GLPATH ?= /usr/lib64/nvidia
GLLINK ?= -L/usr/lib64/nvidia
DFLT_PATH ?= /usr/lib64
endif
ifeq ("$(CENTOS)","0")
GLPATH ?= /usr/lib64/nvidia
GLLINK ?= -L/usr/lib64/nvidia
DFLT_PATH ?= /usr/lib64
endif
ifeq ("$(KYLIN)","0")
GLPATH ?= /usr/lib64/nvidia
GLLINK ?= -L/usr/lib64/nvidia
DFLT_PATH ?= /usr/lib64
endif
NVSCIBUFLIB := $(shell find -L $(GLPATH) $(DFLT_PATH) -name libnvscibuf.so -print 2>/dev/null)
NVSCISYNCLIB := $(shell find -L $(GLPATH) $(DFLT_PATH) -name libnvscisync.so -print 2>/dev/null)
ifeq ("$(NVSCIBUFLIB)","")
$(info >>> WARNING - libnvscibuf.so not found, Waiving the sample <<<)
SAMPLE_ENABLED := 0
endif
ifeq ("$(NVSCISYNCLIB)","")
$(info >>> WARNING - libnvscisync.so not found, Waiving the sample <<<)
SAMPLE_ENABLED := 0
endif
HEADER_SEARCH_PATH ?= $(TARGET_FS)/usr/include
ifeq ($(HOST_ARCH)-$(TARGET_ARCH)-$(TARGET_OS),x86_64-armv7l-linux)
HEADER_SEARCH_PATH += /usr/arm-linux-gnueabihf/include
else ifeq ($(HOST_ARCH)-$(TARGET_ARCH)-$(TARGET_OS),x86_64-aarch64-linux)
HEADER_SEARCH_PATH += /usr/aarch64-linux-gnu/include
endif
NVSCIBUFHEADER := $(shell find -L $(HEADER_SEARCH_PATH) -name nvscibuf.h -print 2>/dev/null)
NVSCISYNCHEADER := $(shell find -L $(HEADER_SEARCH_PATH) -name nvscisync.h -print 2>/dev/null)
ifeq ("$(NVSCIBUFHEADER)","")
$(info >>> WARNING - nvscibuf.h not found, Waiving the sample <<<)
SAMPLE_ENABLED := 0
endif
ifeq ("$(NVSCISYNCHEADER)","")
$(info >>> WARNING - nvscisync.h not found, Waiving the sample <<<)
SAMPLE_ENABLED := 0
endif
else
endif

File diff suppressed because it is too large Load Diff

View File

@ -552,7 +552,6 @@ int main(int argc, char *argv[]) {
checkCudaErrors(cusparseScatter(cusparseHandle, vecz, vecx)); checkCudaErrors(cusparseScatter(cusparseHandle, vecz, vecx));
checkCudaErrors(cusparseDestroySpVec(vecz)); checkCudaErrors(cusparseDestroySpVec(vecz));
checkCudaErrors(cudaDeviceSynchronize()); checkCudaErrors(cudaDeviceSynchronize());
stop = second(); stop = second();

View File

@ -31,12 +31,13 @@
* https://vulkan-tutorial.com/ * https://vulkan-tutorial.com/
*/ */
#include <stdexcept>
#include <iostream>
#include <fstream>
#include <algorithm> #include <algorithm>
#include <fstream>
#include <functional> #include <functional>
#include <iostream>
#include <limits>
#include <set> #include <set>
#include <stdexcept>
#include <string.h> #include <string.h>
#include "VulkanBaseApp.h" #include "VulkanBaseApp.h"

View File

@ -31,14 +31,16 @@
* https://vulkan-tutorial.com/ * https://vulkan-tutorial.com/
*/ */
#include <stdexcept>
#include <iostream>
#include <fstream>
#include <algorithm> #include <algorithm>
#include <fstream>
#include <functional> #include <functional>
#include <iostream>
#include <limits>
#include <set> #include <set>
#include <stdexcept>
#include <string.h> #include <string.h>
#include "VulkanBaseApp.h" #include "VulkanBaseApp.h"
#include "VulkanCudaInterop.h" #include "VulkanCudaInterop.h"