update sample conjugateGradientMultiDeviceCG

remove use of deprecated function cudaLaunchCooperativeKernelMultiDevice()
This commit is contained in:
Rutwik Choughule 2021-11-18 10:16:22 +05:30
parent af0e1af181
commit e64c65a0d3

View File

@ -27,8 +27,7 @@
/* /*
* This sample implements a conjugate gradient solver on multiple GPU using * This sample implements a conjugate gradient solver on multiple GPU using
* Multi Device Cooperative Groups, also uses Unified Memory optimized using * Unified Memory optimized prefetching and usage hints.
* prefetching and usage hints.
* *
*/ */
@ -62,8 +61,8 @@ __device__ double grid_dot_result = 0.0;
/* genTridiag: generate a random tridiagonal symmetric matrix */ /* genTridiag: generate a random tridiagonal symmetric matrix */
void genTridiag(int *I, int *J, float *val, int N, int nz) { void genTridiag(int *I, int *J, float *val, int N, int nz) {
I[0] = 0, J[0] = 0, J[1] = 1; I[0] = 0, J[0] = 0, J[1] = 1;
val[0] = static_cast<float>(rand()) / RAND_MAX + 10.0f; val[0] = (float)rand() / RAND_MAX + 10.0f;
val[1] = static_cast<float>(rand()) / RAND_MAX; val[1] = (float)rand() / RAND_MAX;
int start; int start;
for (int i = 1; i < N; i++) { for (int i = 1; i < N; i++) {
@ -82,10 +81,10 @@ void genTridiag(int *I, int *J, float *val, int N, int nz) {
} }
val[start] = val[start - 1]; val[start] = val[start - 1];
val[start + 1] = static_cast<float>(rand()) / RAND_MAX + 10.0f; val[start + 1] = (float)rand() / RAND_MAX + 10.0f;
if (i < N - 1) { if (i < N - 1) {
val[start + 2] = static_cast<float>(rand()) / RAND_MAX; val[start + 2] = (float)rand() / RAND_MAX;
} }
} }
@ -112,8 +111,8 @@ void cpuSpMV(int *I, int *J, float *val, int nnz, int num_rows, float alpha,
return; return;
} }
double dotProduct(float *vecA, float *vecB, int size) { float dotProduct(float *vecA, float *vecB, int size) {
double result = 0.0; float result = 0.0;
for (int i = 0; i < size; i++) { for (int i = 0; i < size; i++) {
result = result + (vecA[i] * vecB[i]); result = result + (vecA[i] * vecB[i]);
@ -176,11 +175,90 @@ void cpuConjugateGrad(int *I, int *J, float *val, float *x, float *Ax, float *p,
} }
} }
// Data filled on CPU needed for MultiGPU operations.
struct MultiDeviceData {
unsigned char *hostMemoryArrivedList;
unsigned int numDevices;
unsigned int deviceRank;
};
// Class used for coordination of multiple devices.
class PeerGroup {
const MultiDeviceData &data;
const cg::grid_group &grid;
__device__ unsigned char load_arrived(unsigned char *arrived) const {
#if __CUDA_ARCH__ < 700
return *(volatile unsigned char *)arrived;
#else
unsigned int result;
asm volatile("ld.acquire.sys.global.u8 %0, [%1];"
: "=r"(result)
: "l"(arrived)
: "memory");
return result;
#endif
}
__device__ void store_arrived(unsigned char *arrived,
unsigned char val) const {
#if __CUDA_ARCH__ < 700
*(volatile unsigned char *)arrived = val;
#else
unsigned int reg_val = val;
asm volatile(
"st.release.sys.global.u8 [%1], %0;" ::"r"(reg_val) "l"(arrived)
: "memory");
// Avoids compiler warnings from unused variable val.
(void)(reg_val = reg_val);
#endif
}
public:
__device__ PeerGroup(const MultiDeviceData &data, const cg::grid_group &grid)
: data(data), grid(grid){};
__device__ unsigned int size() const { return data.numDevices * grid.size(); }
__device__ unsigned int thread_rank() const {
return data.deviceRank * grid.size() + grid.thread_rank();
}
__device__ void sync() const {
grid.sync();
// One thread from each grid participates in the sync.
if (grid.thread_rank() == 0) {
if (data.deviceRank == 0) {
// Leader grid waits for others to join and then releases them.
// Other GPUs can arrive in any order, so the leader have to wait for
// all others.
for (int i = 0; i < data.numDevices - 1; i++) {
while (load_arrived(&data.hostMemoryArrivedList[i]) == 0)
;
}
for (int i = 0; i < data.numDevices - 1; i++) {
store_arrived(&data.hostMemoryArrivedList[i], 0);
}
__threadfence_system();
} else {
// Other grids note their arrival and wait to be released.
store_arrived(&data.hostMemoryArrivedList[data.deviceRank - 1], 1);
while (load_arrived(&data.hostMemoryArrivedList[data.deviceRank - 1]) ==
1)
;
}
}
grid.sync();
}
};
__device__ void gpuSpMV(int *I, int *J, float *val, int nnz, int num_rows, __device__ void gpuSpMV(int *I, int *J, float *val, int nnz, int num_rows,
float alpha, float *inputVecX, float *outputVecY, float alpha, float *inputVecX, float *outputVecY,
cg::thread_block &cta, const PeerGroup &peer_group) {
const cg::multi_grid_group &multi_grid) { for (int i = peer_group.thread_rank(); i < num_rows; i += peer_group.size()) {
for (int i = multi_grid.thread_rank(); i < num_rows; i += multi_grid.size()) {
int row_elem = I[i]; int row_elem = I[i];
int next_row_elem = I[i + 1]; int next_row_elem = I[i + 1];
int num_elems_this_row = next_row_elem - row_elem; int num_elems_this_row = next_row_elem - row_elem;
@ -195,21 +273,21 @@ __device__ void gpuSpMV(int *I, int *J, float *val, int nnz, int num_rows,
} }
__device__ void gpuSaxpy(float *x, float *y, float a, int size, __device__ void gpuSaxpy(float *x, float *y, float a, int size,
const cg::multi_grid_group &multi_grid) { const PeerGroup &peer_group) {
for (int i = multi_grid.thread_rank(); i < size; i += multi_grid.size()) { for (int i = peer_group.thread_rank(); i < size; i += peer_group.size()) {
y[i] = a * x[i] + y[i]; y[i] = a * x[i] + y[i];
} }
} }
__device__ void gpuDotProduct(float *vecA, float *vecB, int size, __device__ void gpuDotProduct(float *vecA, float *vecB, int size,
const cg::thread_block &cta, const cg::thread_block &cta,
const cg::multi_grid_group &multi_grid) { const PeerGroup &peer_group) {
extern __shared__ double tmp[]; extern __shared__ double tmp[];
double temp_sum = 0.0; double temp_sum = 0.0;
for (int i = multi_grid.thread_rank(); i < size; i += multi_grid.size()) { for (int i = peer_group.thread_rank(); i < size; i += peer_group.size()) {
temp_sum += static_cast<double>(vecA[i] * vecB[i]); temp_sum += (double)(vecA[i] * vecB[i]);
} }
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta); cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta);
@ -235,26 +313,26 @@ __device__ void gpuDotProduct(float *vecA, float *vecB, int size,
} }
__device__ void gpuCopyVector(float *srcA, float *destB, int size, __device__ void gpuCopyVector(float *srcA, float *destB, int size,
const cg::multi_grid_group &multi_grid) { const PeerGroup &peer_group) {
for (int i = multi_grid.thread_rank(); i < size; i += multi_grid.size()) { for (int i = peer_group.thread_rank(); i < size; i += peer_group.size()) {
destB[i] = srcA[i]; destB[i] = srcA[i];
} }
} }
__device__ void gpuScaleVectorAndSaxpy(float *x, float *y, float a, float scale, __device__ void gpuScaleVectorAndSaxpy(float *x, float *y, float a, float scale,
int size, int size, const PeerGroup &peer_group) {
const cg::multi_grid_group &multi_grid) { for (int i = peer_group.thread_rank(); i < size; i += peer_group.size()) {
for (int i = multi_grid.thread_rank(); i < size; i += multi_grid.size()) {
y[i] = a * x[i] + scale * y[i]; y[i] = a * x[i] + scale * y[i];
} }
} }
extern "C" __global__ void multiGpuConjugateGradient( extern "C" __global__ void multiGpuConjugateGradient(
int *I, int *J, float *val, float *x, float *Ax, float *p, float *r, int *I, int *J, float *val, float *x, float *Ax, float *p, float *r,
double *dot_result, int nnz, int N, float tol) { double *dot_result, int nnz, int N, float tol,
MultiDeviceData multi_device_data) {
cg::thread_block cta = cg::this_thread_block(); cg::thread_block cta = cg::this_thread_block();
cg::grid_group grid = cg::this_grid(); cg::grid_group grid = cg::this_grid();
cg::multi_grid_group multi_grid = cg::this_multi_grid(); PeerGroup peer_group(multi_device_data, grid);
const int max_iter = 10000; const int max_iter = 10000;
@ -262,22 +340,22 @@ extern "C" __global__ void multiGpuConjugateGradient(
float alpham1 = -1.0; float alpham1 = -1.0;
float r0 = 0.0, r1, b, a, na; float r0 = 0.0, r1, b, a, na;
for (int i = multi_grid.thread_rank(); i < N; i += multi_grid.size()) { for (int i = peer_group.thread_rank(); i < N; i += peer_group.size()) {
r[i] = 1.0; r[i] = 1.0;
x[i] = 0.0; x[i] = 0.0;
} }
cg::sync(grid); cg::sync(grid);
gpuSpMV(I, J, val, nnz, N, alpha, x, Ax, cta, multi_grid); gpuSpMV(I, J, val, nnz, N, alpha, x, Ax, peer_group);
cg::sync(grid); cg::sync(grid);
gpuSaxpy(Ax, r, alpham1, N, multi_grid); gpuSaxpy(Ax, r, alpham1, N, peer_group);
cg::sync(grid); cg::sync(grid);
gpuDotProduct(r, r, N, cta, multi_grid); gpuDotProduct(r, r, N, cta, peer_group);
cg::sync(grid); cg::sync(grid);
@ -285,7 +363,7 @@ extern "C" __global__ void multiGpuConjugateGradient(
atomicAdd_system(dot_result, grid_dot_result); atomicAdd_system(dot_result, grid_dot_result);
grid_dot_result = 0.0; grid_dot_result = 0.0;
} }
cg::sync(multi_grid); peer_group.sync();
r1 = *dot_result; r1 = *dot_result;
@ -293,21 +371,21 @@ extern "C" __global__ void multiGpuConjugateGradient(
while (r1 > tol * tol && k <= max_iter) { while (r1 > tol * tol && k <= max_iter) {
if (k > 1) { if (k > 1) {
b = r1 / r0; b = r1 / r0;
gpuScaleVectorAndSaxpy(r, p, alpha, b, N, multi_grid); gpuScaleVectorAndSaxpy(r, p, alpha, b, N, peer_group);
} else { } else {
gpuCopyVector(r, p, N, multi_grid); gpuCopyVector(r, p, N, peer_group);
} }
cg::sync(multi_grid); peer_group.sync();
gpuSpMV(I, J, val, nnz, N, alpha, p, Ax, cta, multi_grid); gpuSpMV(I, J, val, nnz, N, alpha, p, Ax, peer_group);
if (multi_grid.thread_rank() == 0) { if (peer_group.thread_rank() == 0) {
*dot_result = 0.0; *dot_result = 0.0;
} }
cg::sync(multi_grid); peer_group.sync();
gpuDotProduct(p, Ax, N, cta, multi_grid); gpuDotProduct(p, Ax, N, cta, peer_group);
cg::sync(grid); cg::sync(grid);
@ -315,26 +393,27 @@ extern "C" __global__ void multiGpuConjugateGradient(
atomicAdd_system(dot_result, grid_dot_result); atomicAdd_system(dot_result, grid_dot_result);
grid_dot_result = 0.0; grid_dot_result = 0.0;
} }
cg::sync(multi_grid); peer_group.sync();
a = r1 / *dot_result; a = r1 / *dot_result;
gpuSaxpy(p, x, a, N, multi_grid); gpuSaxpy(p, x, a, N, peer_group);
na = -a; na = -a;
gpuSaxpy(Ax, r, na, N, multi_grid); gpuSaxpy(Ax, r, na, N, peer_group);
r0 = r1; r0 = r1;
cg::sync(multi_grid); peer_group.sync();
if (multi_grid.thread_rank() == 0) {
if (peer_group.thread_rank() == 0) {
*dot_result = 0.0; *dot_result = 0.0;
} }
cg::sync(multi_grid); peer_group.sync();
gpuDotProduct(r, r, N, cta, multi_grid); gpuDotProduct(r, r, N, cta, peer_group);
cg::sync(grid); cg::sync(grid);
@ -342,7 +421,7 @@ extern "C" __global__ void multiGpuConjugateGradient(
atomicAdd_system(dot_result, grid_dot_result); atomicAdd_system(dot_result, grid_dot_result);
grid_dot_result = 0.0; grid_dot_result = 0.0;
} }
cg::sync(multi_grid); peer_group.sync();
r1 = *dot_result; r1 = *dot_result;
k++; k++;
@ -361,8 +440,7 @@ std::multimap<std::pair<int, int>, int> getIdenticalGPUs() {
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, i)); checkCudaErrors(cudaGetDeviceProperties(&deviceProp, i));
// Filter unsupported devices // Filter unsupported devices
if (deviceProp.cooperativeMultiDeviceLaunch && if (deviceProp.cooperativeLaunch && deviceProp.concurrentManagedAccess) {
deviceProp.concurrentManagedAccess) {
identicalGpus.emplace(std::make_pair(deviceProp.major, deviceProp.minor), identicalGpus.emplace(std::make_pair(deviceProp.major, deviceProp.minor),
i); i);
} }
@ -406,24 +484,24 @@ int main(int argc, char **argv) {
if (distance(bestFit) < kNumGpusRequired) { if (distance(bestFit) < kNumGpusRequired) {
printf( printf(
"No Two or more GPUs with same architecture capable of " "No two or more GPUs with same architecture capable of "
"cooperativeMultiDeviceLaunch & concurrentManagedAccess found. " "concurrentManagedAccess found. "
"\nWaiving the sample\n"); "\nWaiving the sample\n");
exit(EXIT_WAIVED); exit(EXIT_WAIVED);
} }
std::set<int> bestFitDeviceIds; std::set<int> bestFitDeviceIds;
// check & select peer-to-peer access capable GPU devices as enabling p2p // Check & select peer-to-peer access capable GPU devices as enabling p2p
// access between participating // access between participating GPUs gives better performance.
// GPUs gives better performance for multi_grid sync.
for (auto itr = bestFit.first; itr != bestFit.second; itr++) { for (auto itr = bestFit.first; itr != bestFit.second; itr++) {
int deviceId = itr->second; int deviceId = itr->second;
checkCudaErrors(cudaSetDevice(deviceId)); checkCudaErrors(cudaSetDevice(deviceId));
std::for_each(itr, bestFit.second, [&deviceId, &bestFitDeviceIds, std::for_each(
&kNumGpusRequired]( itr, bestFit.second,
decltype(*itr) mapPair) { [&deviceId, &bestFitDeviceIds,
&kNumGpusRequired](decltype(*itr) mapPair) {
if (deviceId != mapPair.second) { if (deviceId != mapPair.second) {
int access = 0; int access = 0;
checkCudaErrors( checkCudaErrors(
@ -434,7 +512,8 @@ int main(int argc, char **argv) {
bestFitDeviceIds.emplace(deviceId); bestFitDeviceIds.emplace(deviceId);
bestFitDeviceIds.emplace(mapPair.second); bestFitDeviceIds.emplace(mapPair.second);
} else { } else {
printf("Ignoring device %i (max devices exceeded)\n", mapPair.second); printf("Ignoring device %i (max devices exceeded)\n",
mapPair.second);
} }
} }
}); });
@ -451,8 +530,7 @@ int main(int argc, char **argv) {
} }
// if bestFitDeviceIds.size() == 0 it means the GPUs in system are not p2p // if bestFitDeviceIds.size() == 0 it means the GPUs in system are not p2p
// capable, // capable, hence we add it without p2p capability check.
// hence we add it without p2p capability check.
if (!bestFitDeviceIds.size()) { if (!bestFitDeviceIds.size()) {
printf("Devices involved are not p2p capable.. selecting %zu of them\n", printf("Devices involved are not p2p capable.. selecting %zu of them\n",
kNumGpusRequired); kNumGpusRequired);
@ -469,8 +547,7 @@ int main(int argc, char **argv) {
}); });
} else { } else {
// perform cudaDeviceEnablePeerAccess in both directions for all // perform cudaDeviceEnablePeerAccess in both directions for all
// participating devices of a cudaLaunchCooperativeKernelMultiDevice call // participating devices.
// this gives better performance for multi_grid sync.
for (auto p1_itr = bestFitDeviceIds.begin(); for (auto p1_itr = bestFitDeviceIds.begin();
p1_itr != bestFitDeviceIds.end(); p1_itr++) { p1_itr != bestFitDeviceIds.end(); p1_itr++) {
checkCudaErrors(cudaSetDevice(*p1_itr)); checkCudaErrors(cudaSetDevice(*p1_itr));
@ -488,14 +565,11 @@ int main(int argc, char **argv) {
N = 10485760 * 2; N = 10485760 * 2;
nz = (N - 2) * 3 + 4; nz = (N - 2) * 3 + 4;
checkCudaErrors( checkCudaErrors(cudaMallocManaged((void **)&I, sizeof(int) * (N + 1)));
cudaMallocManaged(reinterpret_cast<void **>(&I), sizeof(int) * (N + 1))); checkCudaErrors(cudaMallocManaged((void **)&J, sizeof(int) * nz));
checkCudaErrors( checkCudaErrors(cudaMallocManaged((void **)&val, sizeof(float) * nz));
cudaMallocManaged(reinterpret_cast<void **>(&J), sizeof(int) * nz));
checkCudaErrors(
cudaMallocManaged(reinterpret_cast<void **>(&val), sizeof(float) * nz));
float *val_cpu = reinterpret_cast<float *>(malloc(sizeof(float) * nz)); float *val_cpu = (float *)malloc(sizeof(float) * nz);
genTridiag(I, J, val_cpu, N, nz); genTridiag(I, J, val_cpu, N, nz);
@ -507,22 +581,17 @@ int main(int argc, char **argv) {
checkCudaErrors( checkCudaErrors(
cudaMemAdvise(val, sizeof(float) * nz, cudaMemAdviseSetReadMostly, 0)); cudaMemAdvise(val, sizeof(float) * nz, cudaMemAdviseSetReadMostly, 0));
checkCudaErrors( checkCudaErrors(cudaMallocManaged((void **)&x, sizeof(float) * N));
cudaMallocManaged(reinterpret_cast<void **>(&x), sizeof(float) * N));
double *dot_result; double *dot_result;
checkCudaErrors(cudaMallocManaged(reinterpret_cast<void **>(&dot_result), checkCudaErrors(cudaMallocManaged((void **)&dot_result, sizeof(double)));
sizeof(double)));
checkCudaErrors(cudaMemset(dot_result, 0.0, sizeof(double))); checkCudaErrors(cudaMemset(dot_result, 0, sizeof(double)));
// temp memory for ConjugateGradient // temp memory for ConjugateGradient
checkCudaErrors( checkCudaErrors(cudaMallocManaged((void **)&r, N * sizeof(float)));
cudaMallocManaged(reinterpret_cast<void **>(&r), N * sizeof(float))); checkCudaErrors(cudaMallocManaged((void **)&p, N * sizeof(float)));
checkCudaErrors( checkCudaErrors(cudaMallocManaged((void **)&Ax, N * sizeof(float)));
cudaMallocManaged(reinterpret_cast<void **>(&p), N * sizeof(float)));
checkCudaErrors(
cudaMallocManaged(reinterpret_cast<void **>(&Ax), N * sizeof(float)));
std::cout << "\nRunning on GPUs = " << kNumGpusRequired << std::endl; std::cout << "\nRunning on GPUs = " << kNumGpusRequired << std::endl;
cudaStream_t nStreams[kNumGpusRequired]; cudaStream_t nStreams[kNumGpusRequired];
@ -616,10 +685,10 @@ int main(int argc, char **argv) {
} }
#if ENABLE_CPU_DEBUG_CODE #if ENABLE_CPU_DEBUG_CODE
float *Ax_cpu = reinterpret_cast<float *>(malloc(sizeof(float) * N)); float *Ax_cpu = (float *)malloc(sizeof(float) * N);
float *r_cpu = reinterpret_cast<float *>(malloc(sizeof(float) * N)); float *r_cpu = (float *)malloc(sizeof(float) * N);
float *p_cpu = reinterpret_cast<float *>(malloc(sizeof(float) * N)); float *p_cpu = (float *)malloc(sizeof(float) * N);
float *x_cpu = reinterpret_cast<float *>(malloc(sizeof(float) * N)); float *x_cpu = (float *)malloc(sizeof(float) * N);
for (int i = 0; i < N; i++) { for (int i = 0; i < N; i++) {
r_cpu[i] = 1.0; r_cpu[i] = 1.0;
@ -631,28 +700,37 @@ int main(int argc, char **argv) {
numSms * numBlocksPerSm * THREADS_PER_BLOCK, numBlocksPerSm); numSms * numBlocksPerSm * THREADS_PER_BLOCK, numBlocksPerSm);
dim3 dimGrid(numSms * numBlocksPerSm, 1, 1), dim3 dimGrid(numSms * numBlocksPerSm, 1, 1),
dimBlock(THREADS_PER_BLOCK, 1, 1); dimBlock(THREADS_PER_BLOCK, 1, 1);
// Structure used for cross-grid synchronization.
MultiDeviceData multi_device_data;
checkCudaErrors(cudaHostAlloc(
&multi_device_data.hostMemoryArrivedList,
(kNumGpusRequired - 1) * sizeof(*multi_device_data.hostMemoryArrivedList),
cudaHostAllocPortable));
memset(multi_device_data.hostMemoryArrivedList, 0,
(kNumGpusRequired - 1) *
sizeof(*multi_device_data.hostMemoryArrivedList));
multi_device_data.numDevices = kNumGpusRequired;
multi_device_data.deviceRank = 0;
void *kernelArgs[] = { void *kernelArgs[] = {
(void *)&I, (void *)&J, (void *)&val, (void *)&x, (void *)&I, (void *)&J, (void *)&val, (void *)&x,
(void *)&Ax, (void *)&p, (void *)&r, (void *)&dot_result, (void *)&Ax, (void *)&p, (void *)&r, (void *)&dot_result,
(void *)&nz, (void *)&N, (void *)&tol, (void *)&nz, (void *)&N, (void *)&tol, (void *)&multi_device_data,
}; };
cudaLaunchParams *launchParamsList =
(cudaLaunchParams *)malloc(sizeof(cudaLaunchParams) * kNumGpusRequired);
for (int i = 0; i < kNumGpusRequired; i++) {
launchParamsList[i].func = (void *)multiGpuConjugateGradient;
launchParamsList[i].gridDim = dimGrid;
launchParamsList[i].blockDim = dimBlock;
launchParamsList[i].sharedMem = sMemSize;
launchParamsList[i].stream = nStreams[i];
launchParamsList[i].args = kernelArgs;
}
printf("Launching kernel\n"); printf("Launching kernel\n");
checkCudaErrors(cudaLaunchCooperativeKernelMultiDevice( deviceId = bestFitDeviceIds.begin();
launchParamsList, kNumGpusRequired, device_count = 0;
cudaCooperativeLaunchMultiDeviceNoPreSync | while (deviceId != bestFitDeviceIds.end()) {
cudaCooperativeLaunchMultiDeviceNoPostSync)); checkCudaErrors(cudaSetDevice(*deviceId));
checkCudaErrors(cudaLaunchCooperativeKernel(
(void *)multiGpuConjugateGradient, dimGrid, dimBlock, kernelArgs,
sMemSize, nStreams[device_count++]));
multi_device_data.deviceRank++;
deviceId++;
}
checkCudaErrors(cudaMemPrefetchAsync(x, sizeof(float) * N, cudaCpuDeviceId)); checkCudaErrors(cudaMemPrefetchAsync(x, sizeof(float) * N, cudaCpuDeviceId));
checkCudaErrors( checkCudaErrors(
@ -690,6 +768,7 @@ int main(int argc, char **argv) {
} }
} }
checkCudaErrors(cudaFreeHost(multi_device_data.hostMemoryArrivedList));
checkCudaErrors(cudaFree(I)); checkCudaErrors(cudaFree(I));
checkCudaErrors(cudaFree(J)); checkCudaErrors(cudaFree(J));
checkCudaErrors(cudaFree(val)); checkCudaErrors(cudaFree(val));