diff --git a/CHANGELOG.md b/CHANGELOG.md index 12e424fd..89d75dc0 100644 --- a/CHANGELOG.md +++ b/CHANGELOG.md @@ -2,6 +2,7 @@ ### CUDA 12.9 * Updated toolchain for cross-compilation for Tegra Linux platforms. +* Added `run_tests.py` utility to exercise all samples. See README.md for details * Repository has been updated with consistent code formatting across all samples * Many small code tweaks and bug fixes (see commit history for details) * Removed the following outdated samples: diff --git a/README.md b/README.md index 5def32b7..c6536152 100644 --- a/README.md +++ b/README.md @@ -14,7 +14,7 @@ This section describes the release notes for the CUDA Samples on GitHub only. ### Prerequisites -Download and install the [CUDA Toolkit 12.8](https://developer.nvidia.com/cuda-downloads) for your corresponding platform. +Download and install the [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads) for your corresponding platform. For system requirements and installation instructions of cuda toolkit, please refer to the [Linux Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-linux/), and the [Windows Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html). ### Getting the CUDA Samples @@ -122,7 +122,7 @@ Instead of being in the default location, `/usr/local/cuda/include` or `/usr/loc `/usr/local/cuda//targets/aarch64-linux/lib` and -`/usr/local/cuda-12.8//include` +`/usr/local/cuda//include` An example build might look like this: diff --git a/Samples/8_Platform_Specific/Tegra/cudaNvSciBufMultiplanar/README.md b/Samples/8_Platform_Specific/Tegra/cudaNvSciBufMultiplanar/README.md index 02055f45..cadf4d4e 100644 --- a/Samples/8_Platform_Specific/Tegra/cudaNvSciBufMultiplanar/README.md +++ b/Samples/8_Platform_Specific/Tegra/cudaNvSciBufMultiplanar/README.md @@ -30,7 +30,7 @@ cudaDeviceGetAttribute, cudaNvSciBufMultiplanar, cudaDestroyExternalMemory, cuDr ## Prerequisites -Download and install the [CUDA Toolkit 12.8](https://developer.nvidia.com/cuda-downloads) for your corresponding platform. +Download and install the [CUDA Toolkit](https://developer.nvidia.com/cuda-downloads) for your corresponding platform. Make sure the dependencies mentioned in [Dependencies]() section above are installed. ## References (for more details)