Add and update samples for cuda 11.0 support

This commit is contained in:
Mahesh Doijade 2020-05-18 22:22:06 +05:30
parent 6be514679b
commit 4f6e02970b
410 changed files with 21920 additions and 3864 deletions

Binary file not shown.

View File

@ -663,6 +663,7 @@ inline int _ConvertSMVer2Cores(int major, int minor) {
{0x70, 64},
{0x72, 64},
{0x75, 64},
{0x80, 64},
{-1, -1}};
int index = 0;
@ -707,6 +708,7 @@ inline const char* _ConvertSMVer2ArchName(int major, int minor) {
{0x70, "Volta"},
{0x72, "Xavier"},
{0x75, "Turing"},
{0x80, "Ampere"},
{-1, "Graphics Device"}};
int index = 0;
@ -817,7 +819,19 @@ inline int gpuGetMaxGflopsDeviceId() {
}
int multiProcessorCount = 0, clockRate = 0;
checkCudaErrors(cudaDeviceGetAttribute(&multiProcessorCount, cudaDevAttrMultiProcessorCount, current_device));
checkCudaErrors(cudaDeviceGetAttribute(&clockRate, cudaDevAttrClockRate, current_device));
cudaError_t result = cudaDeviceGetAttribute(&clockRate, cudaDevAttrClockRate, current_device);
if (result != cudaSuccess) {
// If cudaDevAttrClockRate attribute is not supported we
// set clockRate as 1, to consider GPU with most SMs and CUDA Cores.
if(result == cudaErrorInvalidValue) {
clockRate = 1;
}
else {
fprintf(stderr, "CUDA error at %s:%d code=%d(%s) \n", __FILE__, __LINE__,
static_cast<unsigned int>(result), _cudaGetErrorEnum(result));
exit(EXIT_FAILURE);
}
}
uint64_t compute_perf = (uint64_t)multiProcessorCount * sm_per_multiproc * clockRate;
if (compute_perf > max_compute_perf) {

View File

@ -475,38 +475,19 @@ int ipcSendData(HANDLE mailslot, const void *data, size_t sz) {
}
int ipcRecvData(ipcHandle *handle, void *data, size_t sz) {
DWORD cbMessage, cMessage, cbRead;
BOOL fResult;
DWORD cbRead = 0;
cbMessage = cMessage = cbRead = 0;
HANDLE mailslot = handle->hMailslot[0];
pollMailSlot:
fResult = GetMailslotInfo(mailslot, (LPDWORD)NULL, &cbMessage, &cMessage,
(LPDWORD)NULL);
if (!fResult) {
printf("IPC failure: GetMailslotInfo failed with %d.\n", GetLastError());
return -1;
}
if (cbMessage == MAILSLOT_NO_MESSAGE) {
goto pollMailSlot;
}
while (cMessage != 0) {
fResult = ReadFile(mailslot, data, (DWORD)sz, &cbRead, NULL);
if (!fResult) {
if (!ReadFile(handle->hMailslot[0], data, (DWORD)sz, &cbRead, NULL)) {
printf("IPC failure: ReadFile failed with %d.\n", GetLastError());
return -1;
}
fResult = GetMailslotInfo(mailslot, (LPDWORD)NULL, &cbMessage, &cMessage,
(LPDWORD)NULL);
if (!fResult) {
printf("IPC failure: GetMailslotInfo failed (%d)\n", GetLastError());
if (sz != (size_t)cbRead) {
printf(
"IPC failure: ReadFile didn't receive the expected number of bytes\n");
return -1;
}
}
return 0;
}
@ -530,7 +511,7 @@ int ipcSendShareableHandles(
printf("IPC failure: DuplicateHandle failed (%d)\n", GetLastError());
return -1;
}
checkIpcErrors(ipcSendData(handle->hMailslot[i], &hDup, sizeof(HANDLE)));
checkIpcErrors(ipcSendData(handle->hMailslot[i], &hDup, sizeof(hDup)));
}
CloseHandle(hProcess);
}

View File

@ -68,7 +68,37 @@ void compileFileToPTX(char *filename, int argc, char **argv, char **ptxResult,
int numCompileOptions = 0;
char *compileParams[1];
char *compileParams[2];
int major = 0, minor = 0;
char deviceName[256];
// Picks the best CUDA device available
CUdevice cuDevice = findCudaDeviceDRV(argc, (const char **)argv);
// get compute capabilities and the devicename
checkCudaErrors(cuDeviceGetAttribute(
&major, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cuDevice));
checkCudaErrors(cuDeviceGetAttribute(
&minor, CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, cuDevice));
{
// Compile for the GPU arch on which are going to run cuda kernel.
std::string compileOptions;
compileOptions = "--gpu-architecture=compute_";
compileParams[numCompileOptions] = reinterpret_cast<char *>(
malloc(sizeof(char) * (compileOptions.length() + 10)));
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
sprintf_s(compileParams[numCompileOptions], sizeof(char) * (compileOptions.length() + 10),
"%s%d%d", compileOptions.c_str(), major, minor);
#else
snprintf(compileParams[numCompileOptions], compileOptions.size() + 10, "%s%d%d",
compileOptions.c_str(), major, minor);
#endif
}
numCompileOptions++;
if (requiresCGheaders) {
std::string compileOptions;
@ -92,13 +122,13 @@ void compileFileToPTX(char *filename, int argc, char **argv, char **ptxResult,
argv[0]);
}
compileOptions += path.c_str();
compileParams[0] = reinterpret_cast<char *>(
compileParams[numCompileOptions] = reinterpret_cast<char *>(
malloc(sizeof(char) * (compileOptions.length() + 1)));
#if defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
sprintf_s(compileParams[0], sizeof(char) * (compileOptions.length() + 1),
sprintf_s(compileParams[numCompileOptions], sizeof(char) * (compileOptions.length() + 1),
"%s", compileOptions.c_str());
#else
snprintf(compileParams[0], compileOptions.size(), "%s",
snprintf(compileParams[numCompileOptions], compileOptions.size(), "%s",
compileOptions.c_str());
#endif
numCompileOptions++;
@ -137,7 +167,9 @@ void compileFileToPTX(char *filename, int argc, char **argv, char **ptxResult,
*ptxResult = ptx;
*ptxResultSize = ptxSize;
if (requiresCGheaders) free(compileParams[0]);
for (int i = 0; i < numCompileOptions; i++) {
free(compileParams[i]);
}
}
CUmodule loadPTX(char *ptx, int argc, char **argv) {

View File

@ -1,11 +1,25 @@
# CUDA Samples
Samples for CUDA Developers which demonstrates features in CUDA Toolkit. This version supports [CUDA Toolkit 10.2](https://developer.nvidia.com/cuda-downloads).
Samples for CUDA Developers which demonstrates features in CUDA Toolkit. This version supports [CUDA Toolkit 11.0](https://developer.nvidia.com/cuda-downloads).
## Release Notes
This section describes the release notes for the CUDA Samples on GitHub only.
### CUDA 11.0
* Added `dmmaTensorCoreGemm`. Demonstrates double precision GEMM computation using the Double precision Warp Matrix Multiply and Accumulate (WMMA) API introduced with CUDA 11 in Ampere chip family tensor cores.
* Added `bf16TensorCoreGemm`. Demonstrates __nv_bfloat16 (e8m7) GEMM computation using the __nv_bfloat16 WMMA API introduced with CUDA 11 in Ampere chip family tensor cores.
* Added `tf32TensorCoreGemm`. Demonstrates tf32 (e8m10) GEMM computation using the tf32 WMMA API introduced with CUDA 11 in Ampere chip family tensor cores.
* Added `globalToShmemAsyncCopy`. Demonstrates async copy of data from global to shared memory when on compute capability 8.0 or higher. Also demonstrates arrive-wait barrier for synchronization.
* Added `simpleAWBarrier`. Demonstrates arrive wait barriers.
* Added `simpleAttributes`. Demonstrates the stream attributes that affect L2 locality.
* Added warp aggregated atomic multi bucket increments kernel using labeled_partition cooperative groups in `warpAggregatedAtomicsCG` which can be used on compute capability 7.0 and above GPU architectures.
* Added `binaryPartitionCG`. Demonstrates binary partition cooperative groups and reduction within the thread block.
* Added two new reduction kernels in `reduction` one which demonstrates reduce_add_sync intrinstic supported on compute capability 8.0 and another which uses cooperative_groups::reduce function which does thread_block_tile level reduction introduced from CUDA 11.0.
* Added `simpleVulkanMMAP`. Demonstrates Vulkan CUDA Interop via cuMemMap APIs.
* Added `concurrentKernels`. Demonstrates the use of CUDA streams for concurrent execution of several kernels on a GPU.
* Dropped Mac OSX support from all samples.
### CUDA 10.2
* Added `simpleD3D11`. Demonstrates CUDA-D3D11 External Resource Interoperability APIs for updating D3D11 buffers from CUDA and synchronization between D3D11 and CUDA with Keyed Mutexes.
* Added `simpleDrvRuntime`. Demonstrates CUDA Driver and Runtime APIs working together to load fatbinary of a CUDA kernel.
@ -69,8 +83,8 @@ This is the first release of CUDA Samples on GitHub:
### Prerequisites
Download and install the [CUDA Toolkit 10.2](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
For system requirements and installation instructions of cuda toolkit, please refer to the [Linux Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-linux/), the [Windows Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html), and the [Mac Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html).
Download and install the [CUDA Toolkit 11.0](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
For system requirements and installation instructions of cuda toolkit, please refer to the [Linux Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-linux/), and the [Windows Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html).
### Getting the CUDA Samples
@ -121,68 +135,39 @@ The samples makefiles can take advantage of certain options:
$ make HOST_COMPILER=g++
```
### Mac
The Mac samples are built using makefiles. To use the makefiles, change directory into the sample directory you wish to build, and run make:
```
$ cd <sample_dir>
$ make
```
The samples makefiles can take advantage of certain options:
* **dbg=1** - build with debug symbols
```
$ make dbg=1
```
* **SMS="A B ..."** - override the SM architectures for which the sample will be built, where "A B ..." is a space-delimited list of SM architectures. For example, to generate SASS for SM 50 and SM 60, use SMS="50 60".
```
$ make SMS="A B ..."
```
* **HOST_COMPILER=<host_compiler>** - override the default clang host compiler. See the [Mac Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#system-requirements) for a list of supported host compilers.
```
$ make HOST_COMPILER=clang
```
## Samples list
### Samples by OS
#### Linux
**[warpAggregatedAtomicsCG](./Samples/warpAggregatedAtomicsCG)** | **[boxFilterNPP](./Samples/boxFilterNPP)** | **[EGLStream_CUDA_Interop](./Samples/EGLStream_CUDA_Interop)** | **[conjugateGradientMultiBlockCG](./Samples/conjugateGradientMultiBlockCG)** |
**[warpAggregatedAtomicsCG](./Samples/warpAggregatedAtomicsCG)** | **[boxFilterNPP](./Samples/boxFilterNPP)** | **[binaryPartitionCG](./Samples/binaryPartitionCG)** | **[dmmaTensorCoreGemm](./Samples/dmmaTensorCoreGemm)** |
---|---|---|---|
**[simpleIPC](./Samples/simpleIPC)** | **[memMapIPCDrv](./Samples/memMapIPCDrv)** | **[vectorAddMMAP](./Samples/vectorAddMMAP)** | **[shfl_scan](./Samples/shfl_scan)** |
**[conjugateGradientCudaGraphs](./Samples/conjugateGradientCudaGraphs)** | **[nvJPEG](./Samples/nvJPEG)** | **[simpleCudaGraphs](./Samples/simpleCudaGraphs)** | **[deviceQuery](./Samples/deviceQuery)** |
**[simpleVoteIntrinsics](./Samples/simpleVoteIntrinsics)** | **[simpleCUBLASXT](./Samples/simpleCUBLASXT)** | **[cudaNvSci](./Samples/cudaNvSci)** | **[UnifiedMemoryPerf](./Samples/UnifiedMemoryPerf)** |
**[cuSolverDn_LinearSolver](./Samples/cuSolverDn_LinearSolver)** | **[vulkanImageCUDA](./Samples/vulkanImageCUDA)** | **[conjugateGradientMultiDeviceCG](./Samples/conjugateGradientMultiDeviceCG)** | **[matrixMulDrv](./Samples/matrixMulDrv)** |
**[cuSolverSp_LinearSolver](./Samples/cuSolverSp_LinearSolver)** | **[simpleCUFFT](./Samples/simpleCUFFT)** | **[reduction](./Samples/reduction)** | **[nvJPEG_encoder](./Samples/nvJPEG_encoder)** |
**[simpleDrvRuntime](./Samples/simpleDrvRuntime)** | **[MersenneTwisterGP11213](./Samples/MersenneTwisterGP11213)** | **[immaTensorCoreGemm](./Samples/immaTensorCoreGemm)** | **[bandwidthTest](./Samples/bandwidthTest)** |
**[EGLStream_CUDA_Interop](./Samples/EGLStream_CUDA_Interop)** | **[conjugateGradientMultiBlockCG](./Samples/conjugateGradientMultiBlockCG)** | **[simpleIPC](./Samples/simpleIPC)** | **[memMapIPCDrv](./Samples/memMapIPCDrv)** |
**[vectorAddMMAP](./Samples/vectorAddMMAP)** | **[shfl_scan](./Samples/shfl_scan)** | **[conjugateGradientCudaGraphs](./Samples/conjugateGradientCudaGraphs)** | **[globalToShmemAsyncCopy](./Samples/globalToShmemAsyncCopy)** |
**[nvJPEG](./Samples/nvJPEG)** | **[simpleCudaGraphs](./Samples/simpleCudaGraphs)** | **[deviceQuery](./Samples/deviceQuery)** | **[simpleVoteIntrinsics](./Samples/simpleVoteIntrinsics)** |
**[simpleCUBLASXT](./Samples/simpleCUBLASXT)** | **[simpleAttributes](./Samples/simpleAttributes)** | **[cudaNvSci](./Samples/cudaNvSci)** | **[tf32TensorCoreGemm](./Samples/tf32TensorCoreGemm)** |
**[UnifiedMemoryPerf](./Samples/UnifiedMemoryPerf)** | **[bf16TensorCoreGemm](./Samples/bf16TensorCoreGemm)** | **[cuSolverDn_LinearSolver](./Samples/cuSolverDn_LinearSolver)** | **[vulkanImageCUDA](./Samples/vulkanImageCUDA)** |
**[conjugateGradientMultiDeviceCG](./Samples/conjugateGradientMultiDeviceCG)** | **[matrixMulDrv](./Samples/matrixMulDrv)** | **[cuSolverSp_LinearSolver](./Samples/cuSolverSp_LinearSolver)** | **[simpleCUFFT](./Samples/simpleCUFFT)** |
**[reduction](./Samples/reduction)** | **[nvJPEG_encoder](./Samples/nvJPEG_encoder)** | **[simpleDrvRuntime](./Samples/simpleDrvRuntime)** | **[MersenneTwisterGP11213](./Samples/MersenneTwisterGP11213)** |
**[simpleAWBarrier](./Samples/simpleAWBarrier)** | **[immaTensorCoreGemm](./Samples/immaTensorCoreGemm)** | **[bandwidthTest](./Samples/bandwidthTest)** | **[concurrentKernels](./Samples/concurrentKernels)** |
**[simpleCUBLAS](./Samples/simpleCUBLAS)** | **[NV12toBGRandResize](./Samples/NV12toBGRandResize)** | **[cudaTensorCoreGemm](./Samples/cudaTensorCoreGemm)** | **[jacobiCudaGraphs](./Samples/jacobiCudaGraphs)** |
**[simpleVulkan](./Samples/simpleVulkan)** | **[vectorAdd_nvrtc](./Samples/vectorAdd_nvrtc)** | **[cannyEdgeDetectorNPP](./Samples/cannyEdgeDetectorNPP)** | **[p2pBandwidthLatencyTest](./Samples/p2pBandwidthLatencyTest)** |
**[matrixMul](./Samples/matrixMul)** | **[systemWideAtomics](./Samples/systemWideAtomics)** |
**[simpleVulkanMMAP](./Samples/simpleVulkanMMAP)** | **[matrixMul](./Samples/matrixMul)** | **[systemWideAtomics](./Samples/systemWideAtomics)** |
#### Windows
**[warpAggregatedAtomicsCG](./Samples/warpAggregatedAtomicsCG)** | **[boxFilterNPP](./Samples/boxFilterNPP)** | **[conjugateGradientMultiBlockCG](./Samples/conjugateGradientMultiBlockCG)** | **[simpleIPC](./Samples/simpleIPC)** |
**[warpAggregatedAtomicsCG](./Samples/warpAggregatedAtomicsCG)** | **[boxFilterNPP](./Samples/boxFilterNPP)** | **[binaryPartitionCG](./Samples/binaryPartitionCG)** | **[dmmaTensorCoreGemm](./Samples/dmmaTensorCoreGemm)** |
---|---|---|---|
**[memMapIPCDrv](./Samples/memMapIPCDrv)** | **[vectorAddMMAP](./Samples/vectorAddMMAP)** | **[shfl_scan](./Samples/shfl_scan)** | **[conjugateGradientCudaGraphs](./Samples/conjugateGradientCudaGraphs)** |
**[nvJPEG](./Samples/nvJPEG)** | **[simpleD3D12](./Samples/simpleD3D12)** | **[simpleCudaGraphs](./Samples/simpleCudaGraphs)** | **[deviceQuery](./Samples/deviceQuery)** |
**[simpleVoteIntrinsics](./Samples/simpleVoteIntrinsics)** | **[simpleCUBLASXT](./Samples/simpleCUBLASXT)** | **[UnifiedMemoryPerf](./Samples/UnifiedMemoryPerf)** | **[cuSolverDn_LinearSolver](./Samples/cuSolverDn_LinearSolver)** |
**[vulkanImageCUDA](./Samples/vulkanImageCUDA)** | **[conjugateGradientMultiDeviceCG](./Samples/conjugateGradientMultiDeviceCG)** | **[matrixMulDrv](./Samples/matrixMulDrv)** | **[cuSolverSp_LinearSolver](./Samples/cuSolverSp_LinearSolver)** |
**[simpleCUFFT](./Samples/simpleCUFFT)** | **[reduction](./Samples/reduction)** | **[nvJPEG_encoder](./Samples/nvJPEG_encoder)** | **[simpleDrvRuntime](./Samples/simpleDrvRuntime)** |
**[simpleD3D11](./Samples/simpleD3D11)** | **[MersenneTwisterGP11213](./Samples/MersenneTwisterGP11213)** | **[immaTensorCoreGemm](./Samples/immaTensorCoreGemm)** | **[bandwidthTest](./Samples/bandwidthTest)** |
**[conjugateGradientMultiBlockCG](./Samples/conjugateGradientMultiBlockCG)** | **[simpleIPC](./Samples/simpleIPC)** | **[memMapIPCDrv](./Samples/memMapIPCDrv)** | **[vectorAddMMAP](./Samples/vectorAddMMAP)** |
**[shfl_scan](./Samples/shfl_scan)** | **[conjugateGradientCudaGraphs](./Samples/conjugateGradientCudaGraphs)** | **[globalToShmemAsyncCopy](./Samples/globalToShmemAsyncCopy)** | **[nvJPEG](./Samples/nvJPEG)** |
**[simpleD3D12](./Samples/simpleD3D12)** | **[simpleCudaGraphs](./Samples/simpleCudaGraphs)** | **[deviceQuery](./Samples/deviceQuery)** | **[simpleVoteIntrinsics](./Samples/simpleVoteIntrinsics)** |
**[simpleCUBLASXT](./Samples/simpleCUBLASXT)** | **[simpleAttributes](./Samples/simpleAttributes)** | **[tf32TensorCoreGemm](./Samples/tf32TensorCoreGemm)** | **[UnifiedMemoryPerf](./Samples/UnifiedMemoryPerf)** |
**[bf16TensorCoreGemm](./Samples/bf16TensorCoreGemm)** | **[cuSolverDn_LinearSolver](./Samples/cuSolverDn_LinearSolver)** | **[vulkanImageCUDA](./Samples/vulkanImageCUDA)** | **[conjugateGradientMultiDeviceCG](./Samples/conjugateGradientMultiDeviceCG)** |
**[matrixMulDrv](./Samples/matrixMulDrv)** | **[cuSolverSp_LinearSolver](./Samples/cuSolverSp_LinearSolver)** | **[simpleCUFFT](./Samples/simpleCUFFT)** | **[reduction](./Samples/reduction)** |
**[nvJPEG_encoder](./Samples/nvJPEG_encoder)** | **[simpleDrvRuntime](./Samples/simpleDrvRuntime)** | **[simpleD3D11](./Samples/simpleD3D11)** | **[MersenneTwisterGP11213](./Samples/MersenneTwisterGP11213)** |
**[simpleAWBarrier](./Samples/simpleAWBarrier)** | **[immaTensorCoreGemm](./Samples/immaTensorCoreGemm)** | **[bandwidthTest](./Samples/bandwidthTest)** | **[concurrentKernels](./Samples/concurrentKernels)** |
**[simpleCUBLAS](./Samples/simpleCUBLAS)** | **[NV12toBGRandResize](./Samples/NV12toBGRandResize)** | **[cudaTensorCoreGemm](./Samples/cudaTensorCoreGemm)** | **[jacobiCudaGraphs](./Samples/jacobiCudaGraphs)** |
**[simpleVulkan](./Samples/simpleVulkan)** | **[vectorAdd_nvrtc](./Samples/vectorAdd_nvrtc)** | **[cannyEdgeDetectorNPP](./Samples/cannyEdgeDetectorNPP)** | **[p2pBandwidthLatencyTest](./Samples/p2pBandwidthLatencyTest)** |
**[matrixMul](./Samples/matrixMul)** |
#### Mac OSX
**[warpAggregatedAtomicsCG](./Samples/warpAggregatedAtomicsCG)** | **[boxFilterNPP](./Samples/boxFilterNPP)** | **[shfl_scan](./Samples/shfl_scan)** | **[conjugateGradientCudaGraphs](./Samples/conjugateGradientCudaGraphs)** |
---|---|---|---|
**[simpleCudaGraphs](./Samples/simpleCudaGraphs)** | **[deviceQuery](./Samples/deviceQuery)** | **[simpleVoteIntrinsics](./Samples/simpleVoteIntrinsics)** | **[simpleCUBLASXT](./Samples/simpleCUBLASXT)** |
**[UnifiedMemoryPerf](./Samples/UnifiedMemoryPerf)** | **[cuSolverDn_LinearSolver](./Samples/cuSolverDn_LinearSolver)** | **[matrixMulDrv](./Samples/matrixMulDrv)** | **[cuSolverSp_LinearSolver](./Samples/cuSolverSp_LinearSolver)** |
**[simpleCUFFT](./Samples/simpleCUFFT)** | **[reduction](./Samples/reduction)** | **[simpleDrvRuntime](./Samples/simpleDrvRuntime)** | **[MersenneTwisterGP11213](./Samples/MersenneTwisterGP11213)** |
**[bandwidthTest](./Samples/bandwidthTest)** | **[simpleCUBLAS](./Samples/simpleCUBLAS)** | **[NV12toBGRandResize](./Samples/NV12toBGRandResize)** | **[jacobiCudaGraphs](./Samples/jacobiCudaGraphs)** |
**[vectorAdd_nvrtc](./Samples/vectorAdd_nvrtc)** | **[cannyEdgeDetectorNPP](./Samples/cannyEdgeDetectorNPP)** | **[p2pBandwidthLatencyTest](./Samples/p2pBandwidthLatencyTest)** | **[matrixMul](./Samples/matrixMul)** |
**[simpleVulkanMMAP](./Samples/simpleVulkanMMAP)** | **[matrixMul](./Samples/matrixMul)** |
## Dependencies

View File

@ -72,9 +72,9 @@ endif
# architecture
HOST_ARCH := $(shell uname -m)
TARGET_ARCH ?= $(HOST_ARCH)
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le armv7l))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le armv7l))
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le))
TARGET_SIZE := 64
else ifneq (,$(filter $(TARGET_ARCH),armv7l))
TARGET_SIZE := 32
@ -85,8 +85,17 @@ ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le armv7l))
else
$(error ERROR - unsupported value $(TARGET_ARCH) for TARGET_ARCH!)
endif
# sbsa and aarch64 systems look similar. Need to differentiate them at host level for now.
ifeq ($(HOST_ARCH),aarch64)
ifeq ($(CUDA_PATH)/targets/sbsa-linux,$(shell ls -1d $(CUDA_PATH)/targets/sbsa-linux))
HOST_ARCH := sbsa
TARGET_ARCH := sbsa
endif
endif
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq (,$(filter $(HOST_ARCH)-$(TARGET_ARCH),aarch64-armv7l x86_64-armv7l x86_64-aarch64 x86_64-ppc64le))
ifeq (,$(filter $(HOST_ARCH)-$(TARGET_ARCH),aarch64-armv7l x86_64-armv7l x86_64-aarch64 x86_64-sbsa x86_64-ppc64le))
$(error ERROR - cross compiling from $(HOST_ARCH) to $(TARGET_ARCH) is not supported!)
endif
endif
@ -141,6 +150,8 @@ else ifneq ($(TARGET_ARCH),$(HOST_ARCH))
else ifeq ($(TARGET_OS), android)
HOST_COMPILER ?= aarch64-linux-android-clang++
endif
else ifeq ($(TARGET_ARCH),sbsa)
HOST_COMPILER ?= aarch64-linux-gnu-g++
else ifeq ($(TARGET_ARCH),ppc64le)
HOST_COMPILER ?= powerpc64le-linux-gnu-g++
endif
@ -185,19 +196,27 @@ ifneq ($(TARGET_ARCH),$(HOST_ARCH))
CCFLAGS += --sysroot=$(TARGET_FS)
endif
LDFLAGS += --sysroot=$(TARGET_FS)
LDFLAGS += -rpath-link=$(TARGET_FS)/lib -L $(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib -L $(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/aarch64-linux-gnu -L $(TARGET_FS)/usr/lib/aarch64-linux-gnu
LDFLAGS += -rpath-link=$(TARGET_FS)/lib -L$(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/lib/aarch64-linux-gnu -L$(TARGET_FS)/lib/aarch64-linux-gnu
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib -L$(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/aarch64-linux-gnu -L$(TARGET_FS)/usr/lib/aarch64-linux-gnu
LDFLAGS += --unresolved-symbols=ignore-in-shared-libs
CCFLAGS += -isystem=$(TARGET_FS)/usr/include
CCFLAGS += -isystem=$(TARGET_FS)/usr/include/aarch64-linux-gnu
CCFLAGS += -isystem=$(TARGET_FS)/usr/include -I$(TARGET_FS)/usr/include
CCFLAGS += -isystem=$(TARGET_FS)/usr/include/aarch64-linux-gnu -I$(TARGET_FS)/usr/include/aarch64-linux-gnu
endif
endif
endif
ifeq ($(TARGET_OS),qnx)
CCFLAGS += -DWIN_INTERFACE_CUSTOM
ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-qnx)
CCFLAGS += -DWIN_INTERFACE_CUSTOM -I/usr/include/aarch64-qnx-gnu
LDFLAGS += -lsocket
LDFLAGS += -rpath=/usr/lib/aarch64-qnx-gnu -L/usr/lib/aarch64-qnx-gnu
ifneq ($(TARGET_FS),)
LDFLAGS += -rpath=$(TARGET_FS)/usr/lib -L $(TARGET_FS)/usr/lib
LDFLAGS += -rpath=$(TARGET_FS)/usr/libnvidia -L $(TARGET_FS)/usr/libnvidia
endif
ifdef TARGET_OVERRIDE # cuda toolkit targets override
NVCCFLAGS += -target-dir $(TARGET_OVERRIDE)
endif
endif
endif
# Install directory of different arch
@ -206,6 +225,8 @@ ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-linux)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-gnueabihf/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-linux)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),sbsa-linux)
CUDA_INSTALL_TARGET_DIR = targets/sbsa-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-android)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-androideabi/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-android)
@ -289,6 +310,10 @@ else
CUDA_SEARCH_PATH ?= $(CUDA_PATH)/targets/aarch64-linux/lib/stubs
endif
ifeq ($(TARGET_ARCH)-$(TARGET_OS),sbsa-linux)
CUDA_SEARCH_PATH ?= $(CUDA_PATH)/targets/sbsa-linux/lib/stubs
endif
ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-android)
CUDA_SEARCH_PATH ?= $(CUDA_PATH)/targets/armv7-linux-androideabi/lib/stubs
endif
@ -303,12 +328,19 @@ else
ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-qnx)
CUDA_SEARCH_PATH ?= $(CUDA_PATH)/targets/aarch64-qnx/lib/stubs
ifdef TARGET_OVERRIDE
CUDA_SEARCH_PATH := $(CUDA_PATH)/targets/$(TARGET_OVERRIDE)/lib/stubs
endif
endif
ifeq ($(TARGET_ARCH),ppc64le)
CUDA_SEARCH_PATH ?= $(CUDA_PATH)/targets/ppc64le-linux/lib/stubs
endif
ifeq ($(HOST_ARCH),ppc64le)
CUDA_SEARCH_PATH += $(CUDA_PATH)/lib64/stubs
endif
CUDALIB ?= $(shell find -L $(CUDA_SEARCH_PATH) -maxdepth 1 -name libcuda.so 2> /dev/null)
ifeq ("$(CUDALIB)","")
$(info >>> WARNING - libcuda.so not found, CUDA Driver is not installed. Please re-install the driver. <<<)

View File

@ -49,7 +49,6 @@
<scope>1:CUDA Basic Topics</scope>
<scope>2:Graphics Interop</scope>
</scopes>
<sm-arch>sm30</sm-arch>
<sm-arch>sm35</sm-arch>
<sm-arch>sm37</sm-arch>
<sm-arch>sm50</sm-arch>
@ -59,6 +58,7 @@
<sm-arch>sm70</sm-arch>
<sm-arch>sm72</sm-arch>
<sm-arch>sm75</sm-arch>
<sm-arch>sm80</sm-arch>
<supported_envs>
<env>
<arch>x86_64</arch>

View File

@ -10,7 +10,7 @@ EGLStreams Interop
## Supported SM Architectures
[SM 3.0 ](https://developer.nvidia.com/cuda-gpus) [SM 3.5 ](https://developer.nvidia.com/cuda-gpus) [SM 3.7 ](https://developer.nvidia.com/cuda-gpus) [SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus)
[SM 3.5 ](https://developer.nvidia.com/cuda-gpus) [SM 3.7 ](https://developer.nvidia.com/cuda-gpus) [SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus)
## Supported OSes
@ -30,7 +30,7 @@ cuDeviceGet, cuDeviceGetAttribute, cuDeviceComputeCapability, cuDeviceGetCount,
## Prerequisites
Download and install the [CUDA Toolkit 10.2](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
Download and install the [CUDA Toolkit 11.0](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
Make sure the dependencies mentioned in [Dependencies]() section above are installed.
## Build and Run

View File

@ -245,12 +245,30 @@ CUresult cudaProducerTest(test_cuda_producer_s *cudaProducer, char *file) {
cudaEgl.eglColorFormat = eglColorFormat;
cudaEgl.cuFormat = CU_AD_FORMAT_UNSIGNED_INT8;
static int numFramesPresented = 0;
// If there is a frame presented before we check if consumer
// is done with it using cuEGLStreamProducerReturnFrame.
while (numFramesPresented) {
CUeglFrame returnedCudaEgl;
cuStatus = cuEGLStreamProducerReturnFrame(&cudaProducer->cudaConn,
&returnedCudaEgl, NULL);
if (cuStatus == CUDA_ERROR_LAUNCH_TIMEOUT) {
continue;
} else if (cuStatus != CUDA_SUCCESS) {
printf("cuda Producer return frame FAILED with custatus= %d\n", cuStatus);
return cuStatus;
} else {
numFramesPresented--;
}
}
cuStatus =
cuEGLStreamProducerPresentFrame(&cudaProducer->cudaConn, cudaEgl, NULL);
if (cuStatus != CUDA_SUCCESS) {
printf("cuda Producer present frame FAILED with custatus= %d\n", cuStatus);
goto done;
}
numFramesPresented++;
done:
if (file_p) {
@ -281,6 +299,13 @@ CUresult cudaDeviceCreateProducer(test_cuda_producer_s *cudaProducer,
"%d.%d\n\n",
device, deviceName, major, minor);
if (major < 6) {
printf(
"EGLStreams_CUDA_Interop requires SM 6.0 or higher arch GPU. "
"Exiting...\n");
exit(2); // EXIT_WAIVED
}
if (CUDA_SUCCESS !=
(status = cuCtxCreate(&cudaProducer->context, 0, device))) {
printf("failed to create CUDA context\n");

View File

@ -133,10 +133,14 @@ ifeq ("$(TARGET_OS)","linux")
else
endif
ifeq ("$(TARGET_OS)","qnx")
HOST_CCFLAGS := -V5.4.0,gcc_ntoaarch64le
endif
# Attempt to compile a minimal EGL application and run to check if EGL_SUPPORT_REUSE_NV is supported in the EGL headers available.
ifneq ($(SAMPLE_ENABLED), 0)
$(shell printf "#include <EGL/egl.h>\n#include <EGL/eglext.h>\nint main() {\n#ifdef EGL_SUPPORT_REUSE_NV \n #error \"Compatible EGL header found\" \n return 0;\n#endif \n return 1;\n}" > test.c; )
EGL_DEFINES := $(shell $(HOST_COMPILER) $(CCFLAGS) $(EXTRA_CCFLAGS) -lEGL test.c -c 2>&1 | grep -ic "Compatible EGL header found";)
EGL_DEFINES := $(shell $(HOST_COMPILER) $(HOST_CCFLAGS) $(CCFLAGS) $(EXTRA_CCFLAGS) -lEGL test.c -c 2>&1 | grep -ic "Compatible EGL header found";)
SHOULD_WAIVE := 0
ifeq ($(EGL_DEFINES),0)
SHOULD_WAIVE := 1

View File

@ -72,9 +72,9 @@ endif
# architecture
HOST_ARCH := $(shell uname -m)
TARGET_ARCH ?= $(HOST_ARCH)
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le armv7l))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le armv7l))
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le))
TARGET_SIZE := 64
else ifneq (,$(filter $(TARGET_ARCH),armv7l))
TARGET_SIZE := 32
@ -85,8 +85,17 @@ ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le armv7l))
else
$(error ERROR - unsupported value $(TARGET_ARCH) for TARGET_ARCH!)
endif
# sbsa and aarch64 systems look similar. Need to differentiate them at host level for now.
ifeq ($(HOST_ARCH),aarch64)
ifeq ($(CUDA_PATH)/targets/sbsa-linux,$(shell ls -1d $(CUDA_PATH)/targets/sbsa-linux))
HOST_ARCH := sbsa
TARGET_ARCH := sbsa
endif
endif
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq (,$(filter $(HOST_ARCH)-$(TARGET_ARCH),aarch64-armv7l x86_64-armv7l x86_64-aarch64 x86_64-ppc64le))
ifeq (,$(filter $(HOST_ARCH)-$(TARGET_ARCH),aarch64-armv7l x86_64-armv7l x86_64-aarch64 x86_64-sbsa x86_64-ppc64le))
$(error ERROR - cross compiling from $(HOST_ARCH) to $(TARGET_ARCH) is not supported!)
endif
endif
@ -141,6 +150,8 @@ else ifneq ($(TARGET_ARCH),$(HOST_ARCH))
else ifeq ($(TARGET_OS), android)
HOST_COMPILER ?= aarch64-linux-android-clang++
endif
else ifeq ($(TARGET_ARCH),sbsa)
HOST_COMPILER ?= aarch64-linux-gnu-g++
else ifeq ($(TARGET_ARCH),ppc64le)
HOST_COMPILER ?= powerpc64le-linux-gnu-g++
endif
@ -185,19 +196,27 @@ ifneq ($(TARGET_ARCH),$(HOST_ARCH))
CCFLAGS += --sysroot=$(TARGET_FS)
endif
LDFLAGS += --sysroot=$(TARGET_FS)
LDFLAGS += -rpath-link=$(TARGET_FS)/lib -L $(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib -L $(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/aarch64-linux-gnu -L $(TARGET_FS)/usr/lib/aarch64-linux-gnu
LDFLAGS += -rpath-link=$(TARGET_FS)/lib -L$(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/lib/aarch64-linux-gnu -L$(TARGET_FS)/lib/aarch64-linux-gnu
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib -L$(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/aarch64-linux-gnu -L$(TARGET_FS)/usr/lib/aarch64-linux-gnu
LDFLAGS += --unresolved-symbols=ignore-in-shared-libs
CCFLAGS += -isystem=$(TARGET_FS)/usr/include
CCFLAGS += -isystem=$(TARGET_FS)/usr/include/aarch64-linux-gnu
CCFLAGS += -isystem=$(TARGET_FS)/usr/include -I$(TARGET_FS)/usr/include
CCFLAGS += -isystem=$(TARGET_FS)/usr/include/aarch64-linux-gnu -I$(TARGET_FS)/usr/include/aarch64-linux-gnu
endif
endif
endif
ifeq ($(TARGET_OS),qnx)
CCFLAGS += -DWIN_INTERFACE_CUSTOM
ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-qnx)
CCFLAGS += -DWIN_INTERFACE_CUSTOM -I/usr/include/aarch64-qnx-gnu
LDFLAGS += -lsocket
LDFLAGS += -rpath=/usr/lib/aarch64-qnx-gnu -L/usr/lib/aarch64-qnx-gnu
ifneq ($(TARGET_FS),)
LDFLAGS += -rpath=$(TARGET_FS)/usr/lib -L $(TARGET_FS)/usr/lib
LDFLAGS += -rpath=$(TARGET_FS)/usr/libnvidia -L $(TARGET_FS)/usr/libnvidia
endif
ifdef TARGET_OVERRIDE # cuda toolkit targets override
NVCCFLAGS += -target-dir $(TARGET_OVERRIDE)
endif
endif
endif
# Install directory of different arch
@ -206,6 +225,8 @@ ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-linux)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-gnueabihf/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-linux)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),sbsa-linux)
CUDA_INSTALL_TARGET_DIR = targets/sbsa-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-android)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-androideabi/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-android)
@ -251,8 +272,8 @@ ifeq ($(GENCODE_FLAGS),)
$(foreach sm,$(SMS),$(eval GENCODE_FLAGS += -gencode arch=compute_$(sm),code=sm_$(sm)))
ifeq ($(SMS),)
# Generate PTX code from SM 30
GENCODE_FLAGS += -gencode arch=compute_30,code=compute_30
# Generate PTX code from SM 35
GENCODE_FLAGS += -gencode arch=compute_35,code=compute_35
endif
# Generate PTX code from the highest SM architecture in $(SMS) to guarantee forward-compatibility

View File

@ -62,7 +62,7 @@
<OutputFile>$(OutDir)/MersenneTwisterGP11213.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,compute_30;</CodeGeneration>
<CodeGeneration>compute_35,compute_35;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -62,7 +62,7 @@
<OutputFile>$(OutDir)/MersenneTwisterGP11213.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,compute_30;</CodeGeneration>
<CodeGeneration>compute_35,compute_35;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -62,7 +62,7 @@
<OutputFile>$(OutDir)/MersenneTwisterGP11213.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,compute_30;</CodeGeneration>
<CodeGeneration>compute_35,compute_35;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -67,7 +67,7 @@
<OutputFile>$(OutDir)/MersenneTwisterGP11213.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,compute_30;</CodeGeneration>
<CodeGeneration>compute_35,compute_35;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -63,7 +63,7 @@
<OutputFile>$(OutDir)/MersenneTwisterGP11213.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,compute_30;</CodeGeneration>
<CodeGeneration>compute_35,compute_35;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -35,7 +35,6 @@
<scopes>
<scope>1:CUDA Advanced Topics</scope>
</scopes>
<sm-arch>sm30</sm-arch>
<sm-arch>sm35</sm-arch>
<sm-arch>sm37</sm-arch>
<sm-arch>sm50</sm-arch>
@ -45,6 +44,7 @@
<sm-arch>sm70</sm-arch>
<sm-arch>sm72</sm-arch>
<sm-arch>sm75</sm-arch>
<sm-arch>sm80</sm-arch>
<supported_envs>
<env>
<arch>x86_64</arch>

View File

@ -10,11 +10,11 @@ CURAND Library
## Supported SM Architectures
[SM 3.0 ](https://developer.nvidia.com/cuda-gpus) [SM 3.5 ](https://developer.nvidia.com/cuda-gpus) [SM 3.7 ](https://developer.nvidia.com/cuda-gpus) [SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus)
[SM 3.5 ](https://developer.nvidia.com/cuda-gpus) [SM 3.7 ](https://developer.nvidia.com/cuda-gpus) [SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus)
## Supported OSes
Linux, Windows, MacOSX
Linux, Windows
## Supported CPU Architecture
@ -27,7 +27,7 @@ x86_64, ppc64le, armv7l
## Prerequisites
Download and install the [CUDA Toolkit 10.2](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
Download and install the [CUDA Toolkit 11.0](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
Make sure the dependencies mentioned in [Dependencies]() section above are installed.
## Build and Run
@ -67,29 +67,5 @@ The samples makefiles can take advantage of certain options:
$ make HOST_COMPILER=g++
```
### Mac
The Mac samples are built using makefiles. To use the makefiles, change directory into the sample directory you wish to build, and run make:
```
$ cd <sample_dir>
$ make
```
The samples makefiles can take advantage of certain options:
* **dbg=1** - build with debug symbols
```
$ make dbg=1
```
* **SMS="A B ..."** - override the SM architectures for which the sample will be built, where "A B ..." is a space-delimited list of SM architectures. For example, to generate SASS for SM 50 and SM 60, use SMS="50 60".
```
$ make SMS="A B ..."
```
* **HOST_COMPILER=<host_compiler>** - override the default clang host compiler. See the [Mac Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#system-requirements) for a list of supported host compilers.
```
$ make HOST_COMPILER=clang
```
## References (for more details)

View File

@ -72,9 +72,9 @@ endif
# architecture
HOST_ARCH := $(shell uname -m)
TARGET_ARCH ?= $(HOST_ARCH)
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le armv7l))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le armv7l))
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le))
TARGET_SIZE := 64
else ifneq (,$(filter $(TARGET_ARCH),armv7l))
TARGET_SIZE := 32
@ -85,8 +85,17 @@ ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le armv7l))
else
$(error ERROR - unsupported value $(TARGET_ARCH) for TARGET_ARCH!)
endif
# sbsa and aarch64 systems look similar. Need to differentiate them at host level for now.
ifeq ($(HOST_ARCH),aarch64)
ifeq ($(CUDA_PATH)/targets/sbsa-linux,$(shell ls -1d $(CUDA_PATH)/targets/sbsa-linux))
HOST_ARCH := sbsa
TARGET_ARCH := sbsa
endif
endif
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq (,$(filter $(HOST_ARCH)-$(TARGET_ARCH),aarch64-armv7l x86_64-armv7l x86_64-aarch64 x86_64-ppc64le))
ifeq (,$(filter $(HOST_ARCH)-$(TARGET_ARCH),aarch64-armv7l x86_64-armv7l x86_64-aarch64 x86_64-sbsa x86_64-ppc64le))
$(error ERROR - cross compiling from $(HOST_ARCH) to $(TARGET_ARCH) is not supported!)
endif
endif
@ -141,6 +150,8 @@ else ifneq ($(TARGET_ARCH),$(HOST_ARCH))
else ifeq ($(TARGET_OS), android)
HOST_COMPILER ?= aarch64-linux-android-clang++
endif
else ifeq ($(TARGET_ARCH),sbsa)
HOST_COMPILER ?= aarch64-linux-gnu-g++
else ifeq ($(TARGET_ARCH),ppc64le)
HOST_COMPILER ?= powerpc64le-linux-gnu-g++
endif
@ -185,19 +196,27 @@ ifneq ($(TARGET_ARCH),$(HOST_ARCH))
CCFLAGS += --sysroot=$(TARGET_FS)
endif
LDFLAGS += --sysroot=$(TARGET_FS)
LDFLAGS += -rpath-link=$(TARGET_FS)/lib -L $(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib -L $(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/aarch64-linux-gnu -L $(TARGET_FS)/usr/lib/aarch64-linux-gnu
LDFLAGS += -rpath-link=$(TARGET_FS)/lib -L$(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/lib/aarch64-linux-gnu -L$(TARGET_FS)/lib/aarch64-linux-gnu
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib -L$(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/aarch64-linux-gnu -L$(TARGET_FS)/usr/lib/aarch64-linux-gnu
LDFLAGS += --unresolved-symbols=ignore-in-shared-libs
CCFLAGS += -isystem=$(TARGET_FS)/usr/include
CCFLAGS += -isystem=$(TARGET_FS)/usr/include/aarch64-linux-gnu
CCFLAGS += -isystem=$(TARGET_FS)/usr/include -I$(TARGET_FS)/usr/include
CCFLAGS += -isystem=$(TARGET_FS)/usr/include/aarch64-linux-gnu -I$(TARGET_FS)/usr/include/aarch64-linux-gnu
endif
endif
endif
ifeq ($(TARGET_OS),qnx)
CCFLAGS += -DWIN_INTERFACE_CUSTOM
ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-qnx)
CCFLAGS += -DWIN_INTERFACE_CUSTOM -I/usr/include/aarch64-qnx-gnu
LDFLAGS += -lsocket
LDFLAGS += -rpath=/usr/lib/aarch64-qnx-gnu -L/usr/lib/aarch64-qnx-gnu
ifneq ($(TARGET_FS),)
LDFLAGS += -rpath=$(TARGET_FS)/usr/lib -L $(TARGET_FS)/usr/lib
LDFLAGS += -rpath=$(TARGET_FS)/usr/libnvidia -L $(TARGET_FS)/usr/libnvidia
endif
ifdef TARGET_OVERRIDE # cuda toolkit targets override
NVCCFLAGS += -target-dir $(TARGET_OVERRIDE)
endif
endif
endif
# Install directory of different arch
@ -206,6 +225,8 @@ ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-linux)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-gnueabihf/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-linux)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),sbsa-linux)
CUDA_INSTALL_TARGET_DIR = targets/sbsa-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-android)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-androideabi/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-android)
@ -253,9 +274,9 @@ LIBRARIES :=
# Gencode arguments
ifeq ($(TARGET_ARCH),$(filter $(TARGET_ARCH),armv7l aarch64))
SMS ?= 30 35 37 50 52 60 61 70 72 75
SMS ?= 35 37 50 52 60 61 70 72 75 80
else
SMS ?= 30 35 37 50 52 60 61 70 75
SMS ?= 35 37 50 52 60 61 70 75 80
endif
ifeq ($(SMS),)

View File

@ -62,7 +62,7 @@
<OutputFile>$(OutDir)/NV12toBGRandResize.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,sm_30;compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;</CodeGeneration>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -62,7 +62,7 @@
<OutputFile>$(OutDir)/NV12toBGRandResize.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,sm_30;compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;</CodeGeneration>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -62,7 +62,7 @@
<OutputFile>$(OutDir)/NV12toBGRandResize.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,sm_30;compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;</CodeGeneration>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -67,7 +67,7 @@
<OutputFile>$(OutDir)/NV12toBGRandResize.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,sm_30;compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;</CodeGeneration>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -63,7 +63,7 @@
<OutputFile>$(OutDir)/NV12toBGRandResize.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,sm_30;compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;</CodeGeneration>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -32,7 +32,6 @@
<scope>2:Image Processing</scope>
<scope>2:Computer Vision</scope>
</scopes>
<sm-arch>sm30</sm-arch>
<sm-arch>sm35</sm-arch>
<sm-arch>sm37</sm-arch>
<sm-arch>sm50</sm-arch>
@ -42,6 +41,7 @@
<sm-arch>sm70</sm-arch>
<sm-arch>sm72</sm-arch>
<sm-arch>sm75</sm-arch>
<sm-arch>sm80</sm-arch>
<supported_envs>
<env>
<arch>x86_64</arch>

View File

@ -10,11 +10,11 @@ Graphics Interop, Image Processing, Video Processing
## Supported SM Architectures
[SM 3.0 ](https://developer.nvidia.com/cuda-gpus) [SM 3.5 ](https://developer.nvidia.com/cuda-gpus) [SM 3.7 ](https://developer.nvidia.com/cuda-gpus) [SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus)
[SM 3.5 ](https://developer.nvidia.com/cuda-gpus) [SM 3.7 ](https://developer.nvidia.com/cuda-gpus) [SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus)
## Supported OSes
Linux, Windows, MacOSX
Linux, Windows
## Supported CPU Architecture
@ -27,7 +27,7 @@ cudaMemcpy2D, cudaMallocManaged
## Prerequisites
Download and install the [CUDA Toolkit 10.2](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
Download and install the [CUDA Toolkit 11.0](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
## Build and Run
@ -66,29 +66,5 @@ The samples makefiles can take advantage of certain options:
$ make HOST_COMPILER=g++
```
### Mac
The Mac samples are built using makefiles. To use the makefiles, change directory into the sample directory you wish to build, and run make:
```
$ cd <sample_dir>
$ make
```
The samples makefiles can take advantage of certain options:
* **dbg=1** - build with debug symbols
```
$ make dbg=1
```
* **SMS="A B ..."** - override the SM architectures for which the sample will be built, where "A B ..." is a space-delimited list of SM architectures. For example, to generate SASS for SM 50 and SM 60, use SMS="50 60".
```
$ make SMS="A B ..."
```
* **HOST_COMPILER=<host_compiler>** - override the default clang host compiler. See the [Mac Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#system-requirements) for a list of supported host compilers.
```
$ make HOST_COMPILER=clang
```
## References (for more details)

View File

@ -72,9 +72,9 @@ endif
# architecture
HOST_ARCH := $(shell uname -m)
TARGET_ARCH ?= $(HOST_ARCH)
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le armv7l))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le armv7l))
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le))
TARGET_SIZE := 64
else ifneq (,$(filter $(TARGET_ARCH),armv7l))
TARGET_SIZE := 32
@ -85,8 +85,17 @@ ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le armv7l))
else
$(error ERROR - unsupported value $(TARGET_ARCH) for TARGET_ARCH!)
endif
# sbsa and aarch64 systems look similar. Need to differentiate them at host level for now.
ifeq ($(HOST_ARCH),aarch64)
ifeq ($(CUDA_PATH)/targets/sbsa-linux,$(shell ls -1d $(CUDA_PATH)/targets/sbsa-linux))
HOST_ARCH := sbsa
TARGET_ARCH := sbsa
endif
endif
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq (,$(filter $(HOST_ARCH)-$(TARGET_ARCH),aarch64-armv7l x86_64-armv7l x86_64-aarch64 x86_64-ppc64le))
ifeq (,$(filter $(HOST_ARCH)-$(TARGET_ARCH),aarch64-armv7l x86_64-armv7l x86_64-aarch64 x86_64-sbsa x86_64-ppc64le))
$(error ERROR - cross compiling from $(HOST_ARCH) to $(TARGET_ARCH) is not supported!)
endif
endif
@ -141,6 +150,8 @@ else ifneq ($(TARGET_ARCH),$(HOST_ARCH))
else ifeq ($(TARGET_OS), android)
HOST_COMPILER ?= aarch64-linux-android-clang++
endif
else ifeq ($(TARGET_ARCH),sbsa)
HOST_COMPILER ?= aarch64-linux-gnu-g++
else ifeq ($(TARGET_ARCH),ppc64le)
HOST_COMPILER ?= powerpc64le-linux-gnu-g++
endif
@ -185,19 +196,27 @@ ifneq ($(TARGET_ARCH),$(HOST_ARCH))
CCFLAGS += --sysroot=$(TARGET_FS)
endif
LDFLAGS += --sysroot=$(TARGET_FS)
LDFLAGS += -rpath-link=$(TARGET_FS)/lib -L $(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib -L $(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/aarch64-linux-gnu -L $(TARGET_FS)/usr/lib/aarch64-linux-gnu
LDFLAGS += -rpath-link=$(TARGET_FS)/lib -L$(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/lib/aarch64-linux-gnu -L$(TARGET_FS)/lib/aarch64-linux-gnu
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib -L$(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/aarch64-linux-gnu -L$(TARGET_FS)/usr/lib/aarch64-linux-gnu
LDFLAGS += --unresolved-symbols=ignore-in-shared-libs
CCFLAGS += -isystem=$(TARGET_FS)/usr/include
CCFLAGS += -isystem=$(TARGET_FS)/usr/include/aarch64-linux-gnu
CCFLAGS += -isystem=$(TARGET_FS)/usr/include -I$(TARGET_FS)/usr/include
CCFLAGS += -isystem=$(TARGET_FS)/usr/include/aarch64-linux-gnu -I$(TARGET_FS)/usr/include/aarch64-linux-gnu
endif
endif
endif
ifeq ($(TARGET_OS),qnx)
CCFLAGS += -DWIN_INTERFACE_CUSTOM
ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-qnx)
CCFLAGS += -DWIN_INTERFACE_CUSTOM -I/usr/include/aarch64-qnx-gnu
LDFLAGS += -lsocket
LDFLAGS += -rpath=/usr/lib/aarch64-qnx-gnu -L/usr/lib/aarch64-qnx-gnu
ifneq ($(TARGET_FS),)
LDFLAGS += -rpath=$(TARGET_FS)/usr/lib -L $(TARGET_FS)/usr/lib
LDFLAGS += -rpath=$(TARGET_FS)/usr/libnvidia -L $(TARGET_FS)/usr/libnvidia
endif
ifdef TARGET_OVERRIDE # cuda toolkit targets override
NVCCFLAGS += -target-dir $(TARGET_OVERRIDE)
endif
endif
endif
# Install directory of different arch
@ -206,6 +225,8 @@ ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-linux)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-gnueabihf/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-linux)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),sbsa-linux)
CUDA_INSTALL_TARGET_DIR = targets/sbsa-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-android)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-androideabi/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-android)
@ -253,9 +274,9 @@ LIBRARIES :=
# Gencode arguments
ifeq ($(TARGET_ARCH),$(filter $(TARGET_ARCH),armv7l aarch64))
SMS ?= 30 35 37 50 52 60 61 70 72 75
SMS ?= 35 37 50 52 60 61 70 72 75 80
else
SMS ?= 30 35 37 50 52 60 61 70 75
SMS ?= 35 37 50 52 60 61 70 75 80
endif
ifeq ($(SMS),)

View File

@ -44,16 +44,6 @@
<scope>1:CUDA Systems Integration</scope>
<scope>1:Unified Memory</scope>
</scopes>
<sm-arch>sm30</sm-arch>
<sm-arch>sm35</sm-arch>
<sm-arch>sm37</sm-arch>
<sm-arch>sm50</sm-arch>
<sm-arch>sm52</sm-arch>
<sm-arch>sm60</sm-arch>
<sm-arch>sm61</sm-arch>
<sm-arch>sm70</sm-arch>
<sm-arch>sm72</sm-arch>
<sm-arch>sm75</sm-arch>
<supported_envs>
<env>
<arch>x86_64</arch>

View File

@ -10,11 +10,9 @@ CUDA Systems Integration, Unified Memory, CUDA Streams and Events, Pinned System
## Supported SM Architectures
[SM 3.0 ](https://developer.nvidia.com/cuda-gpus) [SM 3.5 ](https://developer.nvidia.com/cuda-gpus) [SM 3.7 ](https://developer.nvidia.com/cuda-gpus) [SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus)
## Supported OSes
Linux, Windows, MacOSX
Linux, Windows
## Supported CPU Architecture
@ -30,7 +28,7 @@ cudaMallocManaged, cudaStreamAttachMemAsync, cudaMemcpyAsync, cudaMallocHost, cu
## Prerequisites
Download and install the [CUDA Toolkit 10.2](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
Download and install the [CUDA Toolkit 11.0](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
Make sure the dependencies mentioned in [Dependencies]() section above are installed.
## Build and Run
@ -70,29 +68,5 @@ The samples makefiles can take advantage of certain options:
$ make HOST_COMPILER=g++
```
### Mac
The Mac samples are built using makefiles. To use the makefiles, change directory into the sample directory you wish to build, and run make:
```
$ cd <sample_dir>
$ make
```
The samples makefiles can take advantage of certain options:
* **dbg=1** - build with debug symbols
```
$ make dbg=1
```
* **SMS="A B ..."** - override the SM architectures for which the sample will be built, where "A B ..." is a space-delimited list of SM architectures. For example, to generate SASS for SM 50 and SM 60, use SMS="50 60".
```
$ make SMS="A B ..."
```
* **HOST_COMPILER=<host_compiler>** - override the default clang host compiler. See the [Mac Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#system-requirements) for a list of supported host compilers.
```
$ make HOST_COMPILER=clang
```
## References (for more details)

View File

@ -62,7 +62,7 @@
<OutputFile>$(OutDir)/UnifiedMemoryPerf.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,sm_30;compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;</CodeGeneration>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -62,7 +62,7 @@
<OutputFile>$(OutDir)/UnifiedMemoryPerf.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,sm_30;compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;</CodeGeneration>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -62,7 +62,7 @@
<OutputFile>$(OutDir)/UnifiedMemoryPerf.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,sm_30;compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;</CodeGeneration>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -67,7 +67,7 @@
<OutputFile>$(OutDir)/UnifiedMemoryPerf.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,sm_30;compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;</CodeGeneration>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -63,7 +63,7 @@
<OutputFile>$(OutDir)/UnifiedMemoryPerf.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,sm_30;compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;</CodeGeneration>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -72,9 +72,9 @@ endif
# architecture
HOST_ARCH := $(shell uname -m)
TARGET_ARCH ?= $(HOST_ARCH)
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le armv7l))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le armv7l))
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le))
TARGET_SIZE := 64
else ifneq (,$(filter $(TARGET_ARCH),armv7l))
TARGET_SIZE := 32
@ -85,8 +85,17 @@ ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le armv7l))
else
$(error ERROR - unsupported value $(TARGET_ARCH) for TARGET_ARCH!)
endif
# sbsa and aarch64 systems look similar. Need to differentiate them at host level for now.
ifeq ($(HOST_ARCH),aarch64)
ifeq ($(CUDA_PATH)/targets/sbsa-linux,$(shell ls -1d $(CUDA_PATH)/targets/sbsa-linux))
HOST_ARCH := sbsa
TARGET_ARCH := sbsa
endif
endif
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq (,$(filter $(HOST_ARCH)-$(TARGET_ARCH),aarch64-armv7l x86_64-armv7l x86_64-aarch64 x86_64-ppc64le))
ifeq (,$(filter $(HOST_ARCH)-$(TARGET_ARCH),aarch64-armv7l x86_64-armv7l x86_64-aarch64 x86_64-sbsa x86_64-ppc64le))
$(error ERROR - cross compiling from $(HOST_ARCH) to $(TARGET_ARCH) is not supported!)
endif
endif
@ -141,6 +150,8 @@ else ifneq ($(TARGET_ARCH),$(HOST_ARCH))
else ifeq ($(TARGET_OS), android)
HOST_COMPILER ?= aarch64-linux-android-clang++
endif
else ifeq ($(TARGET_ARCH),sbsa)
HOST_COMPILER ?= aarch64-linux-gnu-g++
else ifeq ($(TARGET_ARCH),ppc64le)
HOST_COMPILER ?= powerpc64le-linux-gnu-g++
endif
@ -185,19 +196,27 @@ ifneq ($(TARGET_ARCH),$(HOST_ARCH))
CCFLAGS += --sysroot=$(TARGET_FS)
endif
LDFLAGS += --sysroot=$(TARGET_FS)
LDFLAGS += -rpath-link=$(TARGET_FS)/lib -L $(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib -L $(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/aarch64-linux-gnu -L $(TARGET_FS)/usr/lib/aarch64-linux-gnu
LDFLAGS += -rpath-link=$(TARGET_FS)/lib -L$(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/lib/aarch64-linux-gnu -L$(TARGET_FS)/lib/aarch64-linux-gnu
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib -L$(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/aarch64-linux-gnu -L$(TARGET_FS)/usr/lib/aarch64-linux-gnu
LDFLAGS += --unresolved-symbols=ignore-in-shared-libs
CCFLAGS += -isystem=$(TARGET_FS)/usr/include
CCFLAGS += -isystem=$(TARGET_FS)/usr/include/aarch64-linux-gnu
CCFLAGS += -isystem=$(TARGET_FS)/usr/include -I$(TARGET_FS)/usr/include
CCFLAGS += -isystem=$(TARGET_FS)/usr/include/aarch64-linux-gnu -I$(TARGET_FS)/usr/include/aarch64-linux-gnu
endif
endif
endif
ifeq ($(TARGET_OS),qnx)
CCFLAGS += -DWIN_INTERFACE_CUSTOM
ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-qnx)
CCFLAGS += -DWIN_INTERFACE_CUSTOM -I/usr/include/aarch64-qnx-gnu
LDFLAGS += -lsocket
LDFLAGS += -rpath=/usr/lib/aarch64-qnx-gnu -L/usr/lib/aarch64-qnx-gnu
ifneq ($(TARGET_FS),)
LDFLAGS += -rpath=$(TARGET_FS)/usr/lib -L $(TARGET_FS)/usr/lib
LDFLAGS += -rpath=$(TARGET_FS)/usr/libnvidia -L $(TARGET_FS)/usr/libnvidia
endif
ifdef TARGET_OVERRIDE # cuda toolkit targets override
NVCCFLAGS += -target-dir $(TARGET_OVERRIDE)
endif
endif
endif
# Install directory of different arch
@ -206,6 +225,8 @@ ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-linux)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-gnueabihf/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-linux)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),sbsa-linux)
CUDA_INSTALL_TARGET_DIR = targets/sbsa-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-android)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-androideabi/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-android)
@ -247,9 +268,9 @@ LIBRARIES :=
# Gencode arguments
ifeq ($(TARGET_ARCH),$(filter $(TARGET_ARCH),armv7l aarch64))
SMS ?= 30 35 37 50 52 60 61 70 72 75
SMS ?= 35 37 50 52 60 61 70 72 75 80
else
SMS ?= 30 35 37 50 52 60 61 70 75
SMS ?= 35 37 50 52 60 61 70 75 80
endif
ifeq ($(SMS),)

View File

@ -41,7 +41,6 @@
<scope>1:CUDA Basic Topics</scope>
<scope>1:Performance Strategies</scope>
</scopes>
<sm-arch>sm30</sm-arch>
<sm-arch>sm35</sm-arch>
<sm-arch>sm37</sm-arch>
<sm-arch>sm50</sm-arch>
@ -51,6 +50,7 @@
<sm-arch>sm70</sm-arch>
<sm-arch>sm72</sm-arch>
<sm-arch>sm75</sm-arch>
<sm-arch>sm80</sm-arch>
<supported_envs>
<env>
<arch>x86_64</arch>

View File

@ -10,11 +10,11 @@ CUDA Streams and Events, Performance Strategies
## Supported SM Architectures
[SM 3.0 ](https://developer.nvidia.com/cuda-gpus) [SM 3.5 ](https://developer.nvidia.com/cuda-gpus) [SM 3.7 ](https://developer.nvidia.com/cuda-gpus) [SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus)
[SM 3.5 ](https://developer.nvidia.com/cuda-gpus) [SM 3.7 ](https://developer.nvidia.com/cuda-gpus) [SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus)
## Supported OSes
Linux, Windows, MacOSX
Linux, Windows
## Supported CPU Architecture
@ -27,7 +27,7 @@ cudaSetDevice, cudaHostAlloc, cudaFree, cudaMallocHost, cudaFreeHost, cudaMemcpy
## Prerequisites
Download and install the [CUDA Toolkit 10.2](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
Download and install the [CUDA Toolkit 11.0](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
## Build and Run
@ -66,29 +66,5 @@ The samples makefiles can take advantage of certain options:
$ make HOST_COMPILER=g++
```
### Mac
The Mac samples are built using makefiles. To use the makefiles, change directory into the sample directory you wish to build, and run make:
```
$ cd <sample_dir>
$ make
```
The samples makefiles can take advantage of certain options:
* **dbg=1** - build with debug symbols
```
$ make dbg=1
```
* **SMS="A B ..."** - override the SM architectures for which the sample will be built, where "A B ..." is a space-delimited list of SM architectures. For example, to generate SASS for SM 50 and SM 60, use SMS="50 60".
```
$ make SMS="A B ..."
```
* **HOST_COMPILER=<host_compiler>** - override the default clang host compiler. See the [Mac Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#system-requirements) for a list of supported host compilers.
```
$ make HOST_COMPILER=clang
```
## References (for more details)

View File

@ -915,7 +915,7 @@ void printResultsCSV(unsigned int *memSizes, double *bandwidths,
double dSeconds = 0.0;
for (i = 0; i < count; i++) {
dSeconds = (double)memSizes[i] / (bandwidths[i] * (double)(1 << 20));
dSeconds = (double)memSizes[i] / (bandwidths[i] * (double)(1e9));
printf(
"bandwidthTest-%s, Bandwidth = %.1f GB/s, Time = %.5f s, Size = %u "
"bytes, NumDevsUsed = %d\n",

View File

@ -62,7 +62,7 @@
<OutputFile>$(OutDir)/bandwidthTest.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,sm_30;compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;</CodeGeneration>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -62,7 +62,7 @@
<OutputFile>$(OutDir)/bandwidthTest.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,sm_30;compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;</CodeGeneration>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -62,7 +62,7 @@
<OutputFile>$(OutDir)/bandwidthTest.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,sm_30;compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;</CodeGeneration>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -67,7 +67,7 @@
<OutputFile>$(OutDir)/bandwidthTest.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,sm_30;compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;</CodeGeneration>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -63,7 +63,7 @@
<OutputFile>$(OutDir)/bandwidthTest.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,sm_30;compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;</CodeGeneration>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -0,0 +1,362 @@
################################################################################
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
################################################################################
#
# Makefile project only supported on Mac OS X and Linux Platforms)
#
################################################################################
# Location of the CUDA Toolkit
CUDA_PATH ?= /usr/local/cuda
##############################
# start deprecated interface #
##############################
ifeq ($(x86_64),1)
$(info WARNING - x86_64 variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=x86_64 instead)
TARGET_ARCH ?= x86_64
endif
ifeq ($(ARMv7),1)
$(info WARNING - ARMv7 variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=armv7l instead)
TARGET_ARCH ?= armv7l
endif
ifeq ($(aarch64),1)
$(info WARNING - aarch64 variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=aarch64 instead)
TARGET_ARCH ?= aarch64
endif
ifeq ($(ppc64le),1)
$(info WARNING - ppc64le variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=ppc64le instead)
TARGET_ARCH ?= ppc64le
endif
ifneq ($(GCC),)
$(info WARNING - GCC variable has been deprecated)
$(info WARNING - please use HOST_COMPILER=$(GCC) instead)
HOST_COMPILER ?= $(GCC)
endif
ifneq ($(abi),)
$(error ERROR - abi variable has been removed)
endif
############################
# end deprecated interface #
############################
# architecture
HOST_ARCH := $(shell uname -m)
TARGET_ARCH ?= $(HOST_ARCH)
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le armv7l))
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le))
TARGET_SIZE := 64
else ifneq (,$(filter $(TARGET_ARCH),armv7l))
TARGET_SIZE := 32
endif
else
TARGET_SIZE := $(shell getconf LONG_BIT)
endif
else
$(error ERROR - unsupported value $(TARGET_ARCH) for TARGET_ARCH!)
endif
# sbsa and aarch64 systems look similar. Need to differentiate them at host level for now.
ifeq ($(HOST_ARCH),aarch64)
ifeq ($(CUDA_PATH)/targets/sbsa-linux,$(shell ls -1d $(CUDA_PATH)/targets/sbsa-linux))
HOST_ARCH := sbsa
TARGET_ARCH := sbsa
endif
endif
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq (,$(filter $(HOST_ARCH)-$(TARGET_ARCH),aarch64-armv7l x86_64-armv7l x86_64-aarch64 x86_64-sbsa x86_64-ppc64le))
$(error ERROR - cross compiling from $(HOST_ARCH) to $(TARGET_ARCH) is not supported!)
endif
endif
# When on native aarch64 system with userspace of 32-bit, change TARGET_ARCH to armv7l
ifeq ($(HOST_ARCH)-$(TARGET_ARCH)-$(TARGET_SIZE),aarch64-aarch64-32)
TARGET_ARCH = armv7l
endif
# operating system
HOST_OS := $(shell uname -s 2>/dev/null | tr "[:upper:]" "[:lower:]")
TARGET_OS ?= $(HOST_OS)
ifeq (,$(filter $(TARGET_OS),linux darwin qnx android))
$(error ERROR - unsupported value $(TARGET_OS) for TARGET_OS!)
endif
# host compiler
ifeq ($(TARGET_OS),darwin)
ifeq ($(shell expr `xcodebuild -version | grep -i xcode | awk '{print $$2}' | cut -d'.' -f1` \>= 5),1)
HOST_COMPILER ?= clang++
endif
else ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq ($(HOST_ARCH)-$(TARGET_ARCH),x86_64-armv7l)
ifeq ($(TARGET_OS),linux)
HOST_COMPILER ?= arm-linux-gnueabihf-g++
else ifeq ($(TARGET_OS),qnx)
ifeq ($(QNX_HOST),)
$(error ERROR - QNX_HOST must be passed to the QNX host toolchain)
endif
ifeq ($(QNX_TARGET),)
$(error ERROR - QNX_TARGET must be passed to the QNX target toolchain)
endif
export QNX_HOST
export QNX_TARGET
HOST_COMPILER ?= $(QNX_HOST)/usr/bin/arm-unknown-nto-qnx6.6.0eabi-g++
else ifeq ($(TARGET_OS),android)
HOST_COMPILER ?= arm-linux-androideabi-g++
endif
else ifeq ($(TARGET_ARCH),aarch64)
ifeq ($(TARGET_OS), linux)
HOST_COMPILER ?= aarch64-linux-gnu-g++
else ifeq ($(TARGET_OS),qnx)
ifeq ($(QNX_HOST),)
$(error ERROR - QNX_HOST must be passed to the QNX host toolchain)
endif
ifeq ($(QNX_TARGET),)
$(error ERROR - QNX_TARGET must be passed to the QNX target toolchain)
endif
export QNX_HOST
export QNX_TARGET
HOST_COMPILER ?= $(QNX_HOST)/usr/bin/aarch64-unknown-nto-qnx7.0.0-g++
else ifeq ($(TARGET_OS), android)
HOST_COMPILER ?= aarch64-linux-android-clang++
endif
else ifeq ($(TARGET_ARCH),sbsa)
HOST_COMPILER ?= aarch64-linux-gnu-g++
else ifeq ($(TARGET_ARCH),ppc64le)
HOST_COMPILER ?= powerpc64le-linux-gnu-g++
endif
endif
HOST_COMPILER ?= g++
NVCC := $(CUDA_PATH)/bin/nvcc -ccbin $(HOST_COMPILER)
# internal flags
NVCCFLAGS := -m${TARGET_SIZE}
CCFLAGS :=
LDFLAGS :=
# build flags
ifeq ($(TARGET_OS),darwin)
LDFLAGS += -rpath $(CUDA_PATH)/lib
CCFLAGS += -arch $(HOST_ARCH)
else ifeq ($(HOST_ARCH)-$(TARGET_ARCH)-$(TARGET_OS),x86_64-armv7l-linux)
LDFLAGS += --dynamic-linker=/lib/ld-linux-armhf.so.3
CCFLAGS += -mfloat-abi=hard
else ifeq ($(TARGET_OS),android)
LDFLAGS += -pie
CCFLAGS += -fpie -fpic -fexceptions
endif
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-linux)
ifneq ($(TARGET_FS),)
GCCVERSIONLTEQ46 := $(shell expr `$(HOST_COMPILER) -dumpversion` \<= 4.6)
ifeq ($(GCCVERSIONLTEQ46),1)
CCFLAGS += --sysroot=$(TARGET_FS)
endif
LDFLAGS += --sysroot=$(TARGET_FS)
LDFLAGS += -rpath-link=$(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/arm-linux-gnueabihf
endif
endif
ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-linux)
ifneq ($(TARGET_FS),)
GCCVERSIONLTEQ46 := $(shell expr `$(HOST_COMPILER) -dumpversion` \<= 4.6)
ifeq ($(GCCVERSIONLTEQ46),1)
CCFLAGS += --sysroot=$(TARGET_FS)
endif
LDFLAGS += --sysroot=$(TARGET_FS)
LDFLAGS += -rpath-link=$(TARGET_FS)/lib -L$(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/lib/aarch64-linux-gnu -L$(TARGET_FS)/lib/aarch64-linux-gnu
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib -L$(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/aarch64-linux-gnu -L$(TARGET_FS)/usr/lib/aarch64-linux-gnu
LDFLAGS += --unresolved-symbols=ignore-in-shared-libs
CCFLAGS += -isystem=$(TARGET_FS)/usr/include -I$(TARGET_FS)/usr/include
CCFLAGS += -isystem=$(TARGET_FS)/usr/include/aarch64-linux-gnu -I$(TARGET_FS)/usr/include/aarch64-linux-gnu
endif
endif
ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-qnx)
CCFLAGS += -DWIN_INTERFACE_CUSTOM -I/usr/include/aarch64-qnx-gnu
LDFLAGS += -lsocket
LDFLAGS += -rpath=/usr/lib/aarch64-qnx-gnu -L/usr/lib/aarch64-qnx-gnu
ifneq ($(TARGET_FS),)
LDFLAGS += -rpath=$(TARGET_FS)/usr/lib -L $(TARGET_FS)/usr/lib
LDFLAGS += -rpath=$(TARGET_FS)/usr/libnvidia -L $(TARGET_FS)/usr/libnvidia
endif
ifdef TARGET_OVERRIDE # cuda toolkit targets override
NVCCFLAGS += -target-dir $(TARGET_OVERRIDE)
endif
endif
endif
# Install directory of different arch
CUDA_INSTALL_TARGET_DIR :=
ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-linux)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-gnueabihf/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-linux)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),sbsa-linux)
CUDA_INSTALL_TARGET_DIR = targets/sbsa-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-android)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-androideabi/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-android)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-linux-androideabi/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-qnx)
CUDA_INSTALL_TARGET_DIR = targets/ARMv7-linux-QNX/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-qnx)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-qnx/
else ifeq ($(TARGET_ARCH),ppc64le)
CUDA_INSTALL_TARGET_DIR = targets/ppc64le-linux/
endif
# Debug build flags
ifeq ($(dbg),1)
NVCCFLAGS += -g -G
BUILD_TYPE := debug
else
BUILD_TYPE := release
endif
ALL_CCFLAGS :=
ALL_CCFLAGS += $(NVCCFLAGS)
ALL_CCFLAGS += $(EXTRA_NVCCFLAGS)
ALL_CCFLAGS += $(addprefix -Xcompiler ,$(CCFLAGS))
ALL_CCFLAGS += $(addprefix -Xcompiler ,$(EXTRA_CCFLAGS))
SAMPLE_ENABLED := 1
# This sample is not supported on Mac OSX
ifeq ($(TARGET_OS),darwin)
$(info >>> WARNING - bf16TensorCoreGemm is not supported on Mac OSX - waiving sample <<<)
SAMPLE_ENABLED := 0
endif
# This sample is not supported on ARMv7
ifeq ($(TARGET_ARCH),armv7l)
$(info >>> WARNING - bf16TensorCoreGemm is not supported on ARMv7 - waiving sample <<<)
SAMPLE_ENABLED := 0
endif
ALL_LDFLAGS :=
ALL_LDFLAGS += $(ALL_CCFLAGS)
ALL_LDFLAGS += $(addprefix -Xlinker ,$(LDFLAGS))
ALL_LDFLAGS += $(addprefix -Xlinker ,$(EXTRA_LDFLAGS))
# Common includes and paths for CUDA
INCLUDES := -I../../Common
LIBRARIES :=
################################################################################
#Detect if installed version of GCC supports required C++11
ifeq ($(TARGET_OS),linux)
empty :=
space := $(empty) $(empty)
GCCVERSIONSTRING := $(shell expr `$(HOST_COMPILER) -dumpversion`)
#Create version number without "."
GCCVERSION := $(shell expr `echo $(GCCVERSIONSTRING)` | cut -f1 -d.)
GCCVERSION += $(shell expr `echo $(GCCVERSIONSTRING)` | cut -f2 -d.)
GCCVERSION += $(shell expr `echo $(GCCVERSIONSTRING)` | cut -f3 -d.)
# Make sure the version number has at least 3 decimals
GCCVERSION += 00
# Remove spaces from the version number
GCCVERSION := $(subst $(space),$(empty),$(GCCVERSION))
# Crop the version number to 3 decimals.
GCCVERSION := $(shell expr `echo $(GCCVERSION)` | cut -b1-3)
#$(warning $(GCCVERSION))
IS_MIN_VERSION := $(shell expr `echo $(GCCVERSION)` \>= 500)
ifeq ($(IS_MIN_VERSION), 1)
$(info >>> GCC Version is greater or equal to 5.0.0 <<<)
else
$(info >>> Waiving build. Minimum GCC version required is 5.0.0<<<)
SAMPLE_ENABLED := 0
endif
endif
# Gencode arguments
SMS ?= 80
ifeq ($(SMS),)
$(info >>> WARNING - no SM architectures have been specified - waiving sample <<<)
SAMPLE_ENABLED := 0
endif
ifeq ($(GENCODE_FLAGS),)
# Generate SASS code for each SM architecture listed in $(SMS)
$(foreach sm,$(SMS),$(eval GENCODE_FLAGS += -gencode arch=compute_$(sm),code=sm_$(sm)))
# Generate PTX code from the highest SM architecture in $(SMS) to guarantee forward-compatibility
HIGHEST_SM := $(lastword $(sort $(SMS)))
ifneq ($(HIGHEST_SM),)
GENCODE_FLAGS += -gencode arch=compute_$(HIGHEST_SM),code=compute_$(HIGHEST_SM)
endif
endif
ALL_CCFLAGS += --std=c++11
ifeq ($(SAMPLE_ENABLED),0)
EXEC ?= @echo "[@]"
endif
################################################################################
# Target rules
all: build
build: bf16TensorCoreGemm
check.deps:
ifeq ($(SAMPLE_ENABLED),0)
@echo "Sample will be waived due to the above missing dependencies"
else
@echo "Sample is ready - all dependencies have been met"
endif
bf16TensorCoreGemm.o:bf16TensorCoreGemm.cu
$(EXEC) $(NVCC) $(INCLUDES) $(ALL_CCFLAGS) $(GENCODE_FLAGS) -o $@ -c $<
bf16TensorCoreGemm: bf16TensorCoreGemm.o
$(EXEC) $(NVCC) $(ALL_LDFLAGS) $(GENCODE_FLAGS) -o $@ $+ $(LIBRARIES)
$(EXEC) mkdir -p ../../bin/$(TARGET_ARCH)/$(TARGET_OS)/$(BUILD_TYPE)
$(EXEC) cp $@ ../../bin/$(TARGET_ARCH)/$(TARGET_OS)/$(BUILD_TYPE)
run: build
$(EXEC) ./bf16TensorCoreGemm
clean:
rm -f bf16TensorCoreGemm bf16TensorCoreGemm.o
rm -rf ../../bin/$(TARGET_ARCH)/$(TARGET_OS)/$(BUILD_TYPE)/bf16TensorCoreGemm
clobber: clean

View File

@ -0,0 +1,67 @@
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE entry SYSTEM "SamplesInfo.dtd">
<entry>
<name>bf16TensorCoreGemm</name>
<cflags>
<flag>--std=c++11</flag>
</cflags>
<cuda_api_list>
<toolkit>cudaMallocManaged</toolkit>
<toolkit>cudaDeviceSynchronize</toolkit>
<toolkit>cudaFuncSetAttribute</toolkit>
<toolkit>cudaEventCreate</toolkit>
<toolkit>cudaEventRecord</toolkit>
<toolkit>cudaEventSynchronize</toolkit>
<toolkit>cudaEventElapsedTime</toolkit>
<toolkit>cudaFree</toolkit>
</cuda_api_list>
<description><![CDATA[A CUDA sample demonstrating __nv_bfloat16 (e8m7) GEMM computation using the Warp Matrix Multiply and Accumulate (WMMA) API introduced with CUDA 11 in Ampere chip family tensor cores for faster matrix operations. This sample also uses async copy provided by cuda pipeline interface for gmem to shmem async loads which improves kernel performance and reduces register presssure.]]></description>
<devicecompilation>whole</devicecompilation>
<includepaths>
<path>./</path>
<path>../</path>
<path>../../common/inc</path>
</includepaths>
<keyconcepts>
<concept level="basic">Matrix Multiply</concept>
<concept level="advanced">WMMA</concept>
<concept level="advanced">Tensor Cores</concept>
</keyconcepts>
<keywords>
<keyword>matrix multiply</keyword>
<keyword>Async copy</keyword>
<keyword>CPP11</keyword>
<keyword>GCC 5.0.0</keyword>
</keywords>
<libraries>
</libraries>
<librarypaths>
</librarypaths>
<nsight_eclipse>true</nsight_eclipse>
<primary_file>bf16TensorCoreGemm.cu</primary_file>
<scopes>
<scope>1:CUDA Basic Topics</scope>
</scopes>
<sm-arch>sm80</sm-arch>
<supported_envs>
<env>
<arch>x86_64</arch>
<platform>linux</platform>
</env>
<env>
<arch>aarch64</arch>
</env>
<env>
<platform>windows7</platform>
</env>
<env>
<arch>ppc64le</arch>
<platform>linux</platform>
</env>
</supported_envs>
<supported_sm_architectures>
<from>8.0</from>
</supported_sm_architectures>
<title>bfloat16 Tensor Core GEMM</title>
<type>exe</type>
</entry>

View File

@ -0,0 +1,70 @@
# bf16TensorCoreGemm - bfloat16 Tensor Core GEMM
## Description
A CUDA sample demonstrating __nv_bfloat16 (e8m7) GEMM computation using the Warp Matrix Multiply and Accumulate (WMMA) API introduced with CUDA 11 in Ampere chip family tensor cores for faster matrix operations. This sample also uses async copy provided by cuda pipeline interface for gmem to shmem async loads which improves kernel performance and reduces register presssure.
## Key Concepts
Matrix Multiply, WMMA, Tensor Cores
## Supported SM Architectures
[SM 8.0 ](https://developer.nvidia.com/cuda-gpus)
## Supported OSes
Linux, Windows
## Supported CPU Architecture
x86_64, ppc64le, aarch64
## CUDA APIs involved
### [CUDA Runtime API](http://docs.nvidia.com/cuda/cuda-runtime-api/index.html)
cudaMallocManaged, cudaDeviceSynchronize, cudaFuncSetAttribute, cudaEventCreate, cudaEventRecord, cudaEventSynchronize, cudaEventElapsedTime, cudaFree
## Prerequisites
Download and install the [CUDA Toolkit 11.0](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
## Build and Run
### Windows
The Windows samples are built using the Visual Studio IDE. Solution files (.sln) are provided for each supported version of Visual Studio, using the format:
```
*_vs<version>.sln - for Visual Studio <version>
```
Each individual sample has its own set of solution files in its directory:
To build/examine all the samples at once, the complete solution files should be used. To build/examine a single sample, the individual sample solution files should be used.
> **Note:** Some samples require that the Microsoft DirectX SDK (June 2010 or newer) be installed and that the VC++ directory paths are properly set up (**Tools > Options...**). Check DirectX Dependencies section for details."
### Linux
The Linux samples are built using makefiles. To use the makefiles, change the current directory to the sample directory you wish to build, and run make:
```
$ cd <sample_dir>
$ make
```
The samples makefiles can take advantage of certain options:
* **TARGET_ARCH=<arch>** - cross-compile targeting a specific architecture. Allowed architectures are x86_64, ppc64le, aarch64.
By default, TARGET_ARCH is set to HOST_ARCH. On a x86_64 machine, not setting TARGET_ARCH is the equivalent of setting TARGET_ARCH=x86_64.<br/>
`$ make TARGET_ARCH=x86_64` <br/> `$ make TARGET_ARCH=ppc64le` <br/> `$ make TARGET_ARCH=aarch64` <br/>
See [here](http://docs.nvidia.com/cuda/cuda-samples/index.html#cross-samples) for more details.
* **dbg=1** - build with debug symbols
```
$ make dbg=1
```
* **SMS="A B ..."** - override the SM architectures for which the sample will be built, where `"A B ..."` is a space-delimited list of SM architectures. For example, to generate SASS for SM 50 and SM 60, use `SMS="50 60"`.
```
$ make SMS="50 60"
```
* **HOST_COMPILER=<host_compiler>** - override the default g++ host compiler. See the [Linux Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#system-requirements) for a list of supported host compilers.
```
$ make HOST_COMPILER=g++
```
## References (for more details)

View File

@ -0,0 +1,838 @@
/* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// CUDA sample demonstrating a __nv_bfloat16 (E8M7) GEMM computation using the Warp Matrix Multiply
// and Accumulate API introduced in CUDA 11.0.
// In this program, the compute_gemm kernel computes the result of a matrix multiplication
// and addition: D = alpha * A * B + beta * C. The dimensions of both C and D matrices
// are M_GLOBAL x N_GLOBAL. The A matrix is M_GLOBAL x K_GLOBAL (row-major), the B matrix
// is K_GLOBAL x N_GLOBAL (column-major).
// In that kernel, each CTA computes one 128 x 128 tile of the resulting matrix
// per iteration. When the tile is computed, the CTA stores it to the global memory
// and begins a new iteration, selecting a new 128 x 128 tile to compute.
// Each CTA consists of eight warps. For the 128 x 128 tile, each warp computes eight
// 16 x 16 subtiles, organized in a 2 x 4 two-dimensional array.
// Warps compute the 16 x 16 subtiles using nvcuda::wmma::mma_sync operations by
// moving through the K_GLOBAL dimension of the A and B matrices and accumulating
// the intermediate result in the local thread state.
// There are a number of simple optimizations used in the algorithm:
// - The CTA copies the 128 x 128 tile of the C matrix from the global memory to
// shared memory. After that is done, each warp loads the C matrix fragments from
// shared memory, thus avoiding a random global memory access.
// - On each internal iteration, the CTA copies a portion of the A and B matrices from
// global memory to shared memory. After that, all warps in the CTA reuse the A and B
// data from shared memory, thus reducing the number of data copies from global memory.
// - The portions of the A and B matrices are stored in shared memory with an additional
// padding (skew) to reduce the number of shared memory access bank conflicts.
// (See a detailed explanation near the SKEW_BF16 macro definition.)
// - When the CTA finishes computing the tiles of the resulting matrix, each warp stores
// its subtiles to shared memory. The CTA then copies the shared memory contents to
// global memory, again avoiding redundant random global memory accesses.
// - Note that the CTA tile size is chosen to maximize the GPU register utilization,
// but carefully enough to avoid local memory use.
#include <assert.h>
#include <stdio.h>
#include <cuda.h>
#include <cuda_bf16.h>
#include <mma.h>
#include <cuda_pipeline.h>
// helper functions and utilities to work with CUDA
#include <helper_functions.h>
#include <helper_cuda.h>
// Externally configurable parameters.
// Switch for choosing cpp interface for cuda pipeline
// vs primitives interface.
#define USE_CPP_API 0
#ifndef CPU_DEBUG
// Set this to 1 to verify the correctness of the GPU-computed matrix.
#define CPU_DEBUG 0
#endif
#ifndef SHARED_MEMORY_LIMIT_64K
// Set this to 0 to use more than 64 Kb of shared memory to cache data, to
// improve the performance of the computations on GPU.
// Note that you need a GPU that can have more than 64 Kb of shared memory
// per multiprocessor.
#define SHARED_MEMORY_LIMIT_64K 0
#endif
// GPU configuration.
#define WARP_SIZE 32
// MMA matrix tile dimensions.
#define M 16
#define N 16
#define K 16
// GEMM configuration.
#define M_TILES 512
#define N_TILES 512
#define K_TILES 512
#define M_GLOBAL (M * M_TILES)
#define N_GLOBAL (N * N_TILES)
#define K_GLOBAL (K * K_TILES)
#define C_LAYOUT wmma::mem_row_major
// Implementation constants.
#define WARPS_PER_BLOCK 8
#define THREADS_PER_BLOCK (WARP_SIZE * WARPS_PER_BLOCK)
#if SHARED_MEMORY_LIMIT_64K
// With only 64 Kb shared memory available, we can fit two 8-tile chunks of
// the A and B matrix data, that is (M = 16) * (K = 16) * 8 * (CHUNK_K = 8)
// * sizeof(__nv_bfloat16) = 32 Kb each.
// (i.e. two 8x8 arrays of tiles of 16x16 __nv_bfloat16-typed elements per CTA).
// But we cannot account the 8 Kb total skew overhead, without which the performance
// would be severely impacted. So we choose to reduce the chunk size in half,
// i.e. the amount of A and B matrix data we cache in shared memory.
// Accordingly, this doubles the number of outer iterations across the global K
// dimension, which only slightly impacts the performance.
#define CHUNK_K 4
#else
#define CHUNK_K 8
#endif
#define CHUNK_LINE_BYTES (CHUNK_K * K * sizeof(__nv_bfloat16))
#define WARP_COPY_BYTES (WARP_SIZE * sizeof(int4))
#define CHUNK_COPY_LINES_PER_WARP (WARP_COPY_BYTES / CHUNK_LINE_BYTES)
#define CHUNK_COPY_LINE_LANES (WARP_SIZE / CHUNK_COPY_LINES_PER_WARP)
#define BLOCK_ROW_WARPS 2
#define BLOCK_COL_WARPS 4
#define WARP_ROW_TILES 4
#define WARP_COL_TILES 2
#define BLOCK_ROW_TILES (WARP_ROW_TILES * BLOCK_ROW_WARPS)
#define BLOCK_COL_TILES (WARP_COL_TILES * BLOCK_COL_WARPS)
#define GLOBAL_MEM_STRIDE N_GLOBAL
#define SHMEM_STRIDE (N * BLOCK_ROW_TILES)
#define SHMEM_OFFSET (N * WARP_ROW_TILES)
// The macro below is used to shift rows of the A matrix and columns of the B matrix
// in shared memory to minimize possible bank conflicts.
// Before performing the nvcuda::wmma::mma_sync operation, the warp must load the matrix
// data using the nvcuda::wmma::load_matrix_sync operation. Although the memory access pattern
// is not specified for that function, each lane in the warp can read one or multiple matrix
// elements from different matrix rows or columns.
// For shared memory, such access can result in bank conflicts if different rows / columns
// of the matrix map to the same bank. By shifting each row and column by a few bytes, we
// make sure that they map to different banks, thus reducing the number of possible bank
// conflicts.
// The number of 16 two-byte "__nv_bfloat16" elements is chosen as the minimum possible shift because
// we must keep each row and column 256-bit aligned, as required by nvcuda::wmma::load_matrix_sync.
#define SKEW_BF16 16
#define checkKernelErrors(expr) do { \
expr; \
\
cudaError_t __err = cudaGetLastError(); \
if (__err != cudaSuccess) { \
printf("Line %d: '%s' failed: %s\n", __LINE__, # expr, cudaGetErrorString(__err)); \
abort(); \
} \
} while(0)
enum kernels
{
bf16mma_shmem_gemm_async_copy = 0, // __nv_bfloat16 MMA shmem using kernel with async_copy
bf16mma_shmem_gemm = 1, // __nv_bfloat16 MMA shmem using kernel normal copy (without async_copy).
simple_bf16mma_gemm = 2 // __nv_bfloat16 MMA non-shmem using simple kernel.
};
const char* kernelNames[] = {"compute_bf16gemm_async_copy", "compute_bf16gemm",
"simple_wmma_bf16gemm"};
using namespace nvcuda;
namespace nvcuda_namespace = nvcuda::experimental;
__host__ void init_host_matrices(__nv_bfloat16 *a, __nv_bfloat16 *b, float *c)
{
for (int i = 0; i < M_GLOBAL; i++) {
for (int j = 0; j < K_GLOBAL; j++) {
a[i*K_GLOBAL+j] = (__nv_bfloat16)(rand() % 3);
}
}
for (int i = 0; i < N_GLOBAL; i++) {
for (int j = 0; j < K_GLOBAL; j++) {
b[i*K_GLOBAL+j] = (__nv_bfloat16)(rand() % 3);
}
}
for (int t = 0; t < M_GLOBAL * N_GLOBAL; t++) {
c[t] = (float)(rand() % 3);
}
}
__global__ void compute_bf16gemm(const __nv_bfloat16 *A, const __nv_bfloat16 *B, const float *C, float *D, float alpha, float beta)
{
#if __CUDA_ARCH__ >= 800
extern __shared__ __nv_bfloat16 shmem[][CHUNK_K * K + SKEW_BF16];
// Warp and lane identification.
const unsigned int warpId = threadIdx.x / WARP_SIZE;
const unsigned int laneId = threadIdx.x % WARP_SIZE;
// Offset in shared memory from which the B matrix is stored.
const size_t shmem_idx_b_off = BLOCK_COL_TILES * M;
// This pointer is used to access the C and D matrix tiles this warp computes.
float *shmem_warp_tile_ptr = (float*)&shmem[0][0] + (warpId / BLOCK_ROW_WARPS) * SHMEM_STRIDE * N * BLOCK_ROW_WARPS + (warpId % BLOCK_ROW_WARPS) * SHMEM_OFFSET;
// This pointer is used to stream the C and D matrices block-wide tile to and from shared memory.
float *shmem_warp_stream_ptr = (float*)&shmem[0][0] + warpId * SHMEM_STRIDE * N;
// Adjust the beta scaler, as it'll be multiplied by alpha at the end of
// each tile computation. Technically this is not generally correct (may result
// in a loss of precision). Zero still needs to be specially handled though.
beta /= alpha;
// Each CTA slides along the 128 x 128 tiles from the top left corner of the matrix to the
// right and down, and selects the next tile to compute. Once there's no such tile,
// all warps in this CTA exit.
for(unsigned int block_pos = blockIdx.x;; block_pos += gridDim.x) {
const unsigned int block_tile_i = ((block_pos * BLOCK_ROW_TILES) / N_TILES) * (BLOCK_COL_TILES);
const unsigned int block_tile_j = (block_pos * BLOCK_COL_TILES) % N_TILES;
// Stop when there are no more D matrix tiles to compute in this CTA.
if (block_tile_i >= M_TILES) {
break;
}
// This warp's pointer to the C matrix data to copy memory from to shared memory.
const size_t gmem_idx = (block_tile_i + warpId) * M * GLOBAL_MEM_STRIDE + block_tile_j * N;
const float *src_gmem_warp_stream_ptr = &C[gmem_idx];
// Stream multiple C tiles to shared memory.
#pragma unroll
for (int i = 0; i < N; i++) {
*((int4*)(shmem_warp_stream_ptr + SHMEM_STRIDE * i) + laneId) =
*((int4*)(src_gmem_warp_stream_ptr + GLOBAL_MEM_STRIDE * i) + laneId);
}
__syncthreads();
// These fragments will accumulate the result of A and B matrix fragment multiplications
// along the K_GLOBAL dimension.
wmma::fragment<wmma::accumulator, M, N, K, float> c[WARP_COL_TILES][WARP_ROW_TILES];
// Load the C matrix tiles into fragments from shared memory.
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
const float *tile_ptr = shmem_warp_tile_ptr + i * SHMEM_STRIDE * N + j * N;
wmma::load_matrix_sync(c[i][j], tile_ptr, SHMEM_STRIDE, C_LAYOUT);
}
}
__syncthreads();
// Scale the C matrix.
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
#pragma unroll
for (int t = 0; t < c[i][j].num_elements; t++) {
c[i][j].x[t] *= beta;
}
}
}
// Select what warp copies what matrix to shared memory.
// Warps 0-3 copy the A matrix, warps 4-7 copy the B matrix.
const __nv_bfloat16 *warp_ptr = (warpId < (WARPS_PER_BLOCK/2)) ? (&A[block_tile_i * M * K_GLOBAL] + M * K_GLOBAL * (warpId % (WARPS_PER_BLOCK/2)) * 2) :
(&B[block_tile_j * N * K_GLOBAL] + N * K_GLOBAL * (warpId % (WARPS_PER_BLOCK/2)) * 2);
// Go through the global K dimension by a fixed step at a time.
#pragma unroll
for (int tile_k = 0; tile_k < K_TILES; tile_k += CHUNK_K) {
// Copy slices of the A and B matrices to shared memory.
// The first half of the warps in the CTA copy the A matrix, the rest copy the B matrix.
size_t shmem_idx = warpId < (WARPS_PER_BLOCK/2) ? (M * (warpId % (WARPS_PER_BLOCK/2)) * 2) :
(N * (warpId % (WARPS_PER_BLOCK/2)) * 2 + shmem_idx_b_off);
// First half of the warp copies the first row / column of the matrix,
// the second half of the warp copies the next.
const __nv_bfloat16 *lane_ptr = (warp_ptr + tile_k * K + (laneId / CHUNK_COPY_LINE_LANES) * K_GLOBAL);
// Shift the second half of the warp to the next row / column in the shared memory.
shmem_idx += laneId / CHUNK_COPY_LINE_LANES;
#pragma unroll
for(int i = 0; i < ((WARP_SIZE/2) / CHUNK_COPY_LINES_PER_WARP) * 2; i++) {
// Copy 16 bytes at once in each lane.
*((int4*)&shmem[shmem_idx][0] + (laneId % CHUNK_COPY_LINE_LANES)) = *((int4*)lane_ptr + (laneId % CHUNK_COPY_LINE_LANES));
// Advance the global memory pointer and the shared memory index.
lane_ptr = lane_ptr + K_GLOBAL * CHUNK_COPY_LINES_PER_WARP;
shmem_idx += CHUNK_COPY_LINES_PER_WARP;
}
__syncthreads();
// Compute a grid of C matrix tiles in each warp.
#pragma unroll
for (int k_step = 0; k_step < CHUNK_K; k_step++) {
wmma::fragment<wmma::matrix_a, M, N, K, __nv_bfloat16, wmma::row_major> a[WARP_COL_TILES];
wmma::fragment<wmma::matrix_b, M, N, K, __nv_bfloat16, wmma::col_major> b[WARP_ROW_TILES];
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
size_t shmem_idx_a = (warpId/BLOCK_ROW_WARPS) * M * BLOCK_ROW_WARPS + (i * M);
const __nv_bfloat16 *tile_ptr = &shmem[shmem_idx_a][k_step * K];
wmma::load_matrix_sync(a[i], tile_ptr, K * CHUNK_K + SKEW_BF16);
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
if (i == 0) {
// Load the B matrix fragment once, because it is going to be reused
// against the other A matrix fragments.
size_t shmem_idx_b = shmem_idx_b_off + (WARP_ROW_TILES * N) * (warpId%2) + (j * N);
const __nv_bfloat16 *tile_ptr = &shmem[shmem_idx_b][k_step * K];
wmma::load_matrix_sync(b[j], tile_ptr, K * CHUNK_K + SKEW_BF16);
}
wmma::mma_sync(c[i][j], a[i], b[j], c[i][j]);
}
}
}
__syncthreads();
}
// Store the D fragments to shared memory.
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
#pragma unroll
// Uniform, point-wise transformations of ALL fragment elements by ALL threads in the
// warp are well-defined even though element indices within fragment storage are not defined.
for (int t = 0; t < c[i][j].num_elements; t++)
c[i][j].x[t] *= alpha;
float *tile_ptr = shmem_warp_tile_ptr + i * SHMEM_STRIDE * K + j * N;
wmma::store_matrix_sync(tile_ptr, c[i][j], SHMEM_STRIDE, C_LAYOUT);
}
}
__syncthreads();
// Now that shared memory contains all the D tiles, stream them to global memory.
float *dst_gmem_warp_stream_ptr = &D[gmem_idx];
#pragma unroll
for (int i = 0; i < N; i++) {
*((int4*)(dst_gmem_warp_stream_ptr + GLOBAL_MEM_STRIDE * i) + laneId) =
*((int4*)(shmem_warp_stream_ptr + SHMEM_STRIDE * i) + laneId);
}
__syncthreads();
}
#endif
}
__global__ void compute_bf16gemm_async_copy(const __nv_bfloat16 *A, const __nv_bfloat16 *B, const float *C, float *D, float alpha, float beta)
{
#if __CUDA_ARCH__ >= 800
extern __shared__ __nv_bfloat16 shmem[][CHUNK_K * K + SKEW_BF16];
// Warp and lane identification.
const unsigned int warpId = threadIdx.x / WARP_SIZE;
const unsigned int laneId = threadIdx.x % WARP_SIZE;
// Offset in shared memory from which the B matrix is stored.
const size_t shmem_idx_b_off = BLOCK_COL_TILES * M;
// This pointer is used to access the C and D matrix tiles this warp computes.
float *shmem_warp_tile_ptr = (float*)&shmem[0][0] + (warpId / BLOCK_ROW_WARPS) * SHMEM_STRIDE * N * BLOCK_ROW_WARPS + (warpId % BLOCK_ROW_WARPS) * SHMEM_OFFSET;
// This pointer is used to stream the C and D matrices block-wide tile to and from shared memory.
float *shmem_warp_stream_ptr = (float*)&shmem[0][0] + warpId * SHMEM_STRIDE * N;
// Adjust the beta scaler, as it'll be multiplied by alpha at the end of
// each tile computation. Technically this is not generally correct (may result
// in a loss of precision). Zero still needs to be specially handled though.
beta /= alpha;
#if USE_CPP_API
nvcuda_namespace::pipeline pipe;
#endif
// Each CTA slides along the 128 x 128 tiles from the top left corner of the matrix to the
// right and down, and selects the next tile to compute. Once there's no such tile,
// all warps in this CTA exit.
for(unsigned int block_pos = blockIdx.x;; block_pos += gridDim.x) {
const unsigned int block_tile_i = ((block_pos * BLOCK_ROW_TILES) / N_TILES) * (BLOCK_COL_TILES);
const unsigned int block_tile_j = (block_pos * BLOCK_COL_TILES) % N_TILES;
// Stop when there are no more D matrix tiles to compute in this CTA.
if (block_tile_i >= M_TILES) {
break;
}
// This warp's pointer to the C matrix data to copy memory from to shared memory.
const size_t gmem_idx = (block_tile_i + warpId) * M * GLOBAL_MEM_STRIDE + block_tile_j * N;
const float *src_gmem_warp_stream_ptr = &C[gmem_idx];
// Stream multiple C tiles to shared memory.
#pragma unroll
for (int i = 0; i < N; i++) {
#if USE_CPP_API
nvcuda_namespace::memcpy_async(*((int4*)(shmem_warp_stream_ptr + SHMEM_STRIDE * i) + laneId),
*((int4*)(src_gmem_warp_stream_ptr + GLOBAL_MEM_STRIDE * i) + laneId),
pipe);
pipe.commit();
#else
__pipeline_memcpy_async((reinterpret_cast<int4*>(&shmem_warp_stream_ptr[(SHMEM_STRIDE * i)])) + laneId,
(reinterpret_cast<const int4*>(&src_gmem_warp_stream_ptr[(GLOBAL_MEM_STRIDE * i)])) + laneId,
sizeof(int4));
__pipeline_commit();
#endif
}
#if USE_CPP_API
pipe.wait_prior<0>();
#else
__pipeline_wait_prior(0);
#endif
__syncthreads();
// These fragments will accumulate the result of A and B matrix fragment multiplications
// along the K_GLOBAL dimension.
wmma::fragment<wmma::accumulator, M, N, K, float> c[WARP_COL_TILES][WARP_ROW_TILES];
// Load the C matrix tiles into fragments from shared memory.
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
const float *tile_ptr = shmem_warp_tile_ptr + i * SHMEM_STRIDE * N + j * N;
wmma::load_matrix_sync(c[i][j], tile_ptr, SHMEM_STRIDE, C_LAYOUT);
}
}
__syncthreads();
// Scale the C matrix.
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
#pragma unroll
for (int t = 0; t < c[i][j].num_elements; t++) {
c[i][j].x[t] *= beta;
}
}
}
// Select what warp copies what matrix to shared memory.
// Warps 0-3 copy the A matrix, warps 4-7 copy the B matrix.
const __nv_bfloat16 *warp_ptr = (warpId < (WARPS_PER_BLOCK/2)) ? (&A[block_tile_i * M * K_GLOBAL] + M * K_GLOBAL * (warpId % (WARPS_PER_BLOCK/2)) * 2) :
(&B[block_tile_j * N * K_GLOBAL] + N * K_GLOBAL * (warpId % (WARPS_PER_BLOCK/2)) * 2);
// Go through the global K dimension by a fixed step at a time.
#pragma unroll
for (int tile_k = 0; tile_k < K_TILES; tile_k += CHUNK_K) {
// Copy slices of the A and B matrices to shared memory.
// The first half of the warps in the CTA copy the A matrix, the rest copy the B matrix.
size_t shmem_idx = warpId < (WARPS_PER_BLOCK/2) ? (M * (warpId % (WARPS_PER_BLOCK/2)) * 2) :
(N * (warpId % (WARPS_PER_BLOCK/2)) * 2 + shmem_idx_b_off);
// First half of the warp copies the first row / column of the matrix,
// the second half of the warp copies the next.
const __nv_bfloat16 *lane_ptr = (warp_ptr + tile_k * K + (laneId / CHUNK_COPY_LINE_LANES) * K_GLOBAL);
// Shift the second half of the warp to the next row / column in the shared memory.
shmem_idx += laneId / CHUNK_COPY_LINE_LANES;
#pragma unroll
for(int i = 0; i < ((WARP_SIZE/2) / CHUNK_COPY_LINES_PER_WARP) * 2; i++) {
// Copy 16 bytes at once in each lane.
#if USE_CPP_API
nvcuda_namespace::memcpy_async(*((int4*)&shmem[shmem_idx][0] + (laneId % CHUNK_COPY_LINE_LANES)),
*((int4*)lane_ptr + (laneId % CHUNK_COPY_LINE_LANES)), pipe);
pipe.commit();
#else
__pipeline_memcpy_async((int4*)&shmem[shmem_idx][0] + (laneId % CHUNK_COPY_LINE_LANES),
(int4*)lane_ptr + (laneId % CHUNK_COPY_LINE_LANES), sizeof(int4));
__pipeline_commit();
#endif
// Advance the global memory pointer and the shared memory index.
lane_ptr = lane_ptr + K_GLOBAL * CHUNK_COPY_LINES_PER_WARP;
shmem_idx += CHUNK_COPY_LINES_PER_WARP;
}
#if USE_CPP_API
pipe.wait_prior<0>();
#else
__pipeline_wait_prior(0);
#endif
__syncthreads();
// Compute a grid of C matrix tiles in each warp.
#pragma unroll
for (int k_step = 0; k_step < CHUNK_K; k_step++) {
wmma::fragment<wmma::matrix_a, M, N, K, __nv_bfloat16, wmma::row_major> a[WARP_COL_TILES];
wmma::fragment<wmma::matrix_b, M, N, K, __nv_bfloat16, wmma::col_major> b[WARP_ROW_TILES];
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
size_t shmem_idx_a = (warpId / BLOCK_ROW_WARPS) * M * BLOCK_ROW_WARPS + (i * M);
const __nv_bfloat16 *tile_ptr = &shmem[shmem_idx_a][k_step * K];
wmma::load_matrix_sync(a[i], tile_ptr, K * CHUNK_K + SKEW_BF16);
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
if (i == 0) {
// Load the B matrix fragment once, because it is going to be reused
// against the other A matrix fragments.
size_t shmem_idx_b = shmem_idx_b_off + (WARP_ROW_TILES * N) * (warpId%2) + (j * N);
const __nv_bfloat16 *tile_ptr = &shmem[shmem_idx_b][k_step * K];
wmma::load_matrix_sync(b[j], tile_ptr, K * CHUNK_K + SKEW_BF16);
}
wmma::mma_sync(c[i][j], a[i], b[j], c[i][j]);
}
}
}
__syncthreads();
}
// Store the D fragments to shared memory.
#pragma unroll
for (int i = 0; i < WARP_COL_TILES; i++) {
#pragma unroll
for (int j = 0; j < WARP_ROW_TILES; j++) {
#pragma unroll
// Uniform, point-wise transformations of ALL fragment elements by ALL threads in the
// warp are well-defined even though element indices within fragment storage are not defined.
for (int t = 0; t < c[i][j].num_elements; t++)
c[i][j].x[t] *= alpha;
float *tile_ptr = shmem_warp_tile_ptr + i * SHMEM_STRIDE * K + j * N;
wmma::store_matrix_sync(tile_ptr, c[i][j], SHMEM_STRIDE, C_LAYOUT);
}
}
__syncthreads();
// Now that shared memory contains all the D tiles, stream them to global memory.
float *dst_gmem_warp_stream_ptr = &D[gmem_idx];
#pragma unroll
for (int i = 0; i < N; i++) {
*((int4*)(dst_gmem_warp_stream_ptr + GLOBAL_MEM_STRIDE * i) + laneId) =
*((int4*)(shmem_warp_stream_ptr + SHMEM_STRIDE * i) + laneId);
}
__syncthreads();
}
#endif
}
// Performs an MxNxK bf16 GEMM (C=alpha*A*B + beta*C) assuming:
// 1) Matrices are packed in memory.
// 2) M, N and K are multiples of 16, 16 and 16 respectively.
// 3) A is row major, B is column major matrix.
// Note: This is a less performant version of the compute_bf16gemm kernel. It is designed for
// demonstration purposes only to show the CUDA WMMA API use without relying on
// availability of the shared memory.
__global__ void simple_wmma_bf16gemm(__nv_bfloat16 *a, __nv_bfloat16 *b, float *c, float *d, int m_ld, int n_ld, int k_ld, float alpha, float beta)
{
#if __CUDA_ARCH__ >= 800
// Leading dimensions. Packed with no transpositions.
int lda = k_ld;
int ldb = k_ld;
int ldc = n_ld;
// Tile using a 2D grid
int warpM = (blockIdx.x * blockDim.x + threadIdx.x) / warpSize;
int warpN = (blockIdx.y * blockDim.y + threadIdx.y);
// Declare the fragments
wmma::fragment<wmma::matrix_a, M, N, K, __nv_bfloat16, wmma::row_major> a_frag;
wmma::fragment<wmma::matrix_b, M, N, K, __nv_bfloat16, wmma::col_major> b_frag;
wmma::fragment<wmma::accumulator, M, N, K, float> acc_frag;
wmma::fragment<wmma::accumulator, M, N, K, float> c_frag;
wmma::fill_fragment(acc_frag, 0.0f);
// Loop over k
for (int i = 0; i < k_ld; i += K) {
int aCol = i;
int aRow = warpM * M;
int bCol = i;
int bRow = warpN * N;
// Bounds checking
if (aRow < m_ld && aCol < k_ld && bRow < k_ld && bCol < n_ld) {
// Load the inputs
wmma::load_matrix_sync(a_frag, a + aCol + aRow * lda, lda);
wmma::load_matrix_sync(b_frag, b + bRow + bCol * ldb, ldb);
// Perform the matrix multiplication
wmma::mma_sync(acc_frag, a_frag, b_frag, acc_frag);
}
}
// Load in the current value of c, scale it by beta, and add this our result scaled by alpha
int cCol = warpN * N;
int cRow = warpM * M;
if (cRow < m_ld && cCol < n_ld) {
wmma::load_matrix_sync(c_frag, c + cCol + cRow * ldc, ldc, wmma::mem_row_major);
for(int i=0; i < c_frag.num_elements; i++) {
c_frag.x[i] = alpha * acc_frag.x[i] + beta * c_frag.x[i];
}
// Store the output
wmma::store_matrix_sync(d + cCol + cRow * ldc, c_frag, ldc, wmma::mem_row_major);
}
#endif
}
__host__ void matMultiplyOnHost(__nv_bfloat16 *A, __nv_bfloat16 *B, float *C,
float alpha, float beta,
int numARows, int numAColumns,
int numBRows, int numBColumns,
int numCRows, int numCColumns)
{
for (int i = 0; i < numCRows; i++) {
for (int j = 0; j < numCColumns; j++) {
float temp = 0.0;
for (int k = 0; k < numAColumns; k++) {
temp += (float)A[i * numAColumns + k] * (float)B[j * numBRows + k];
}
C[i*numCColumns + j] = temp * alpha + beta * C[i * numCColumns + j];
}
}
}
int main(int argc, char **argv)
{
printf("Initializing...\n");
int dev = findCudaDevice(argc, (const char **)argv);
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, dev));
// Tensor cores require a GPU of Volta (SM8X) architecture or higher.
if (deviceProp.major < 8) {
printf("bf16TensorCoreGemm requires requires SM 8.0 or higher to use Tensor Cores. Exiting...\n");
exit(EXIT_WAIVED);
}
printf("M: %d (%d x %d)\n", M_GLOBAL, M, M_TILES);
printf("N: %d (%d x %d)\n", N_GLOBAL, N, N_TILES);
printf("K: %d (%d x %d)\n", K_GLOBAL, K, K_TILES);
__nv_bfloat16 *A_h = NULL;
__nv_bfloat16 *B_h = NULL;
float *C_h = NULL;
#if CPU_DEBUG
float *result_hD = NULL;
float *result_host = NULL;
#endif
A_h = (__nv_bfloat16*) malloc(sizeof(__nv_bfloat16) * M_GLOBAL * K_GLOBAL);
B_h = (__nv_bfloat16*) malloc(sizeof(__nv_bfloat16) * K_GLOBAL * N_GLOBAL);
C_h = (float*) malloc(sizeof(float) * M_GLOBAL * N_GLOBAL);
#if CPU_DEBUG
result_hD = (float*) malloc(sizeof(float) * M_GLOBAL * N_GLOBAL);
result_host = (float*) malloc(sizeof(float) * M_GLOBAL * N_GLOBAL);
#endif
__nv_bfloat16 *A = NULL;
__nv_bfloat16 *B = NULL;
float *C = NULL;
float *D = NULL;
checkCudaErrors(cudaMalloc((void**)&A, sizeof(__nv_bfloat16) * M_GLOBAL * K_GLOBAL));
checkCudaErrors(cudaMalloc((void**)&B, sizeof(__nv_bfloat16) * N_GLOBAL * K_GLOBAL));
checkCudaErrors(cudaMalloc((void**)&C, sizeof(float) * M_GLOBAL * N_GLOBAL));
checkCudaErrors(cudaMalloc((void**)&D, sizeof(float) * M_GLOBAL * N_GLOBAL));
assert(((unsigned long long)A) % 128 == 0);
assert(((unsigned long long)B) % 128 == 0);
assert(((unsigned long long)C) % 128 == 0);
assert(((unsigned long long)D) % 128 == 0);
init_host_matrices(A_h, B_h, C_h);
printf("Preparing data for GPU...\n");
checkCudaErrors(cudaMemcpy(A, A_h, sizeof(__nv_bfloat16) * M_GLOBAL * K_GLOBAL, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(B, B_h, sizeof(__nv_bfloat16) * N_GLOBAL * K_GLOBAL, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemcpy(C, C_h, sizeof(float) * M_GLOBAL * N_GLOBAL, cudaMemcpyHostToDevice));
checkCudaErrors(cudaMemset(D, 0, sizeof(float) * M_GLOBAL * N_GLOBAL));
enum {
// Compute the right amount of shared memory to request.
// We need shared memory to hold per-CTA C and D matrix tiles, and to cache per-CTA chunks
// of the A and B matrices. Therefore, the right amount to request is the maximum of those
// two numbers.
SHMEM_SZ = MAX(sizeof(__nv_bfloat16) * (BLOCK_COL_TILES * M) * (CHUNK_K * K + SKEW_BF16) * 2,
M * (BLOCK_ROW_WARPS * WARP_ROW_TILES) * N * (BLOCK_COL_WARPS * WARP_COL_TILES) * sizeof(float))
};
printf("Required shared memory size: %lu Kb\n", SHMEM_SZ / 1024UL);
const float alpha = 1.1f;
const float beta = 1.2f;
cudaEvent_t start, stop;
checkCudaErrors(cudaEventCreate(&start));
checkCudaErrors(cudaEventCreate(&stop));
checkCudaErrors(cudaEventRecord(start));
// kernel to run - default (b16mma_shmem_gemm_async_copy == 0)
kernels selected_kernel = bf16mma_shmem_gemm_async_copy;
if (checkCmdLineFlag(argc, (const char **)argv, "kernel")) {
int kernel_number = getCmdLineArgumentInt(argc, (const char **)argv, "kernel");
if (kernel_number < 3) {
selected_kernel = (kernels)kernel_number;
}
else {
printf("Error: kernel number should be between 0 to 2, you have entered %d\n", kernel_number);
exit(EXIT_FAILURE);
}
}
// If enough shared memory available on the GPU use high performant kernel
if ((deviceProp.sharedMemPerMultiprocessor >= SHMEM_SZ) && (selected_kernel != simple_bf16mma_gemm)) {
printf("Computing using high performance kernel = %d - %s\n", selected_kernel, kernelNames[selected_kernel]);
switch (selected_kernel)
{
case bf16mma_shmem_gemm_async_copy :
default:
checkCudaErrors(cudaFuncSetAttribute(compute_bf16gemm_async_copy, cudaFuncAttributeMaxDynamicSharedMemorySize, SHMEM_SZ));
checkKernelErrors((compute_bf16gemm_async_copy<<<deviceProp.multiProcessorCount*2, THREADS_PER_BLOCK, SHMEM_SZ>>>(A, B, C, D, alpha, beta)));
break;
case bf16mma_shmem_gemm :
checkCudaErrors(cudaFuncSetAttribute(compute_bf16gemm, cudaFuncAttributeMaxDynamicSharedMemorySize, SHMEM_SZ));
checkKernelErrors((compute_bf16gemm<<<deviceProp.multiProcessorCount*2, THREADS_PER_BLOCK, SHMEM_SZ>>>(A, B, C, D, alpha, beta)));
break;
}
#if CPU_DEBUG
checkCudaErrors(cudaMemcpy(result_hD, D, sizeof(float)*M_GLOBAL*N_GLOBAL, cudaMemcpyDeviceToHost));
#endif
}
else {
dim3 gridDim;
dim3 blockDim;
// blockDim.x must be a multple of warpSize
// 128x4 means we have 16 warps and a block computes a 64x64 output tile
blockDim.x = 128;
blockDim.y = 4;
gridDim.x = (M_GLOBAL + (M * blockDim.x / 32 - 1)) / (M * blockDim.x / 32);
gridDim.y = (N_GLOBAL + N * blockDim.y - 1) / (N * blockDim.y);
printf("Computing... using simple_wmma_gemm kernel\n");
simple_wmma_bf16gemm<<<gridDim, blockDim>>>(A, B, C, D, M_GLOBAL, N_GLOBAL, K_GLOBAL, alpha, beta);
#if CPU_DEBUG
checkCudaErrors(cudaMemcpy(result_hD, D, sizeof(float) * M_GLOBAL * N_GLOBAL, cudaMemcpyDeviceToHost));
#endif
}
checkCudaErrors(cudaEventRecord(stop));
checkCudaErrors(cudaEventSynchronize(stop));
#if CPU_DEBUG
printf("Verifying correctness of the computations...\n");
memcpy(result_host, C_h, sizeof(float) * M_GLOBAL * N_GLOBAL);
matMultiplyOnHost(A_h, B_h, result_host,
alpha, beta,
M_GLOBAL, K_GLOBAL,
K_GLOBAL, N_GLOBAL,
M_GLOBAL, N_GLOBAL);
for (int i = 0; i < N_GLOBAL * M_GLOBAL; i++) {
if (fabs(result_hD[i] - result_host[i]) > 0.1f) {
printf("mismatch i=%d result_hD=%f result_host=%f\n", i, result_hD[i], result_host[i]);
}
}
free(result_hD);
free(result_host);
#endif
float milliseconds = 0;
checkCudaErrors(cudaEventElapsedTime(&milliseconds, start, stop));
printf("Time: %f ms\n", milliseconds);
printf("TFLOPS: %.2f\n", (((double)M_GLOBAL * N_GLOBAL * K_GLOBAL * 2)/(milliseconds/1000.)) / 1e12);
free(A_h);
free(B_h);
free(C_h);
checkCudaErrors(cudaFree((void*)A));
checkCudaErrors(cudaFree((void*)B));
checkCudaErrors(cudaFree((void*)C));
checkCudaErrors(cudaFree((void*)D));
return 0;
}

View File

@ -0,0 +1,20 @@

Microsoft Visual Studio Solution File, Format Version 14.00
# Visual Studio 2015
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "bf16TensorCoreGemm", "bf16TensorCoreGemm_vs2015.vcxproj", "{997E0757-EA74-4A4E-A0FC-47D8C8831A15}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|x64 = Debug|x64
Release|x64 = Release|x64
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Debug|x64.ActiveCfg = Debug|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Debug|x64.Build.0 = Debug|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Release|x64.ActiveCfg = Release|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Release|x64.Build.0 = Release|x64
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
EndGlobal

View File

@ -0,0 +1,107 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<CUDAPropsPath Condition="'$(CUDAPropsPath)'==''">$(VCTargetsPath)\BuildCustomizations</CUDAPropsPath>
</PropertyGroup>
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|x64">
<Configuration>Debug</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|x64">
<Configuration>Release</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
</ItemGroup>
<PropertyGroup Label="Globals">
<ProjectGuid>{997E0757-EA74-4A4E-A0FC-47D8C8831A15}</ProjectGuid>
<RootNamespace>bf16TensorCoreGemm_vs2015</RootNamespace>
<ProjectName>bf16TensorCoreGemm</ProjectName>
<CudaToolkitCustomDir />
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup>
<ConfigurationType>Application</ConfigurationType>
<CharacterSet>MultiByte</CharacterSet>
<PlatformToolset>v140</PlatformToolset>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)'=='Debug'">
<UseDebugLibraries>true</UseDebugLibraries>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)'=='Release'">
<WholeProgramOptimization>true</WholeProgramOptimization>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
<Import Project="$(CUDAPropsPath)\CUDA 10.2.props" />
</ImportGroup>
<ImportGroup Label="PropertySheets">
<Import Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup>
<IntDir>$(Platform)/$(Configuration)/</IntDir>
<IncludePath>$(IncludePath)</IncludePath>
<CodeAnalysisRuleSet>AllRules.ruleset</CodeAnalysisRuleSet>
<CodeAnalysisRules />
<CodeAnalysisRuleAssemblies />
</PropertyGroup>
<PropertyGroup Condition="'$(Platform)'=='x64'">
<OutDir>../../bin/win64/$(Configuration)/</OutDir>
</PropertyGroup>
<ItemDefinitionGroup>
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<PreprocessorDefinitions>WIN32;_MBCS;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>./;$(CudaToolkitDir)/include;../../Common;</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<AdditionalDependencies>cudart_static.lib;kernel32.lib;user32.lib;gdi32.lib;winspool.lib;comdlg32.lib;advapi32.lib;shell32.lib;ole32.lib;oleaut32.lib;uuid.lib;odbc32.lib;odbccp32.lib;%(AdditionalDependencies)</AdditionalDependencies>
<AdditionalLibraryDirectories>$(CudaToolkitLibDir);</AdditionalLibraryDirectories>
<OutputFile>$(OutDir)/bf16TensorCoreGemm.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>
</CudaCompile>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)'=='Debug'">
<ClCompile>
<Optimization>Disabled</Optimization>
<RuntimeLibrary>MultiThreadedDebug</RuntimeLibrary>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
<LinkTimeCodeGeneration>Default</LinkTimeCodeGeneration>
</Link>
<CudaCompile>
<Runtime>MTd</Runtime>
<TargetMachinePlatform>64</TargetMachinePlatform>
</CudaCompile>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)'=='Release'">
<ClCompile>
<Optimization>MaxSpeed</Optimization>
<RuntimeLibrary>MultiThreaded</RuntimeLibrary>
</ClCompile>
<Link>
<GenerateDebugInformation>false</GenerateDebugInformation>
<LinkTimeCodeGeneration>UseLinkTimeCodeGeneration</LinkTimeCodeGeneration>
</Link>
<CudaCompile>
<Runtime>MT</Runtime>
<TargetMachinePlatform>64</TargetMachinePlatform>
</CudaCompile>
</ItemDefinitionGroup>
<ItemGroup>
<CudaCompile Include="bf16TensorCoreGemm.cu" />
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
<Import Project="$(CUDAPropsPath)\CUDA 10.2.targets" />
</ImportGroup>
</Project>

View File

@ -0,0 +1,20 @@

Microsoft Visual Studio Solution File, Format Version 12.00
# Visual Studio 2017
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "bf16TensorCoreGemm", "bf16TensorCoreGemm_vs2017.vcxproj", "{997E0757-EA74-4A4E-A0FC-47D8C8831A15}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|x64 = Debug|x64
Release|x64 = Release|x64
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Debug|x64.ActiveCfg = Debug|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Debug|x64.Build.0 = Debug|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Release|x64.ActiveCfg = Release|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Release|x64.Build.0 = Release|x64
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
EndGlobal

View File

@ -0,0 +1,112 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<CUDAPropsPath Condition="'$(CUDAPropsPath)'==''">$(VCTargetsPath)\BuildCustomizations</CUDAPropsPath>
</PropertyGroup>
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|x64">
<Configuration>Debug</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|x64">
<Configuration>Release</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
</ItemGroup>
<PropertyGroup Label="Globals">
<ProjectGuid>{997E0757-EA74-4A4E-A0FC-47D8C8831A15}</ProjectGuid>
<RootNamespace>bf16TensorCoreGemm_vs2017</RootNamespace>
<ProjectName>bf16TensorCoreGemm</ProjectName>
<CudaToolkitCustomDir />
</PropertyGroup>
<PropertyGroup Condition="'$(WindowsTargetPlatformVersion)'==''">
<LatestTargetPlatformVersion>$([Microsoft.Build.Utilities.ToolLocationHelper]::GetLatestSDKTargetPlatformVersion('Windows', '10.0'))</LatestTargetPlatformVersion>
<WindowsTargetPlatformVersion Condition="'$(WindowsTargetPlatformVersion)' == ''">$(LatestTargetPlatformVersion)</WindowsTargetPlatformVersion>
<TargetPlatformVersion>$(WindowsTargetPlatformVersion)</TargetPlatformVersion>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup>
<ConfigurationType>Application</ConfigurationType>
<CharacterSet>MultiByte</CharacterSet>
<PlatformToolset>v141</PlatformToolset>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)'=='Debug'">
<UseDebugLibraries>true</UseDebugLibraries>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)'=='Release'">
<WholeProgramOptimization>true</WholeProgramOptimization>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
<Import Project="$(CUDAPropsPath)\CUDA 10.2.props" />
</ImportGroup>
<ImportGroup Label="PropertySheets">
<Import Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup>
<IntDir>$(Platform)/$(Configuration)/</IntDir>
<IncludePath>$(IncludePath)</IncludePath>
<CodeAnalysisRuleSet>AllRules.ruleset</CodeAnalysisRuleSet>
<CodeAnalysisRules />
<CodeAnalysisRuleAssemblies />
</PropertyGroup>
<PropertyGroup Condition="'$(Platform)'=='x64'">
<OutDir>../../bin/win64/$(Configuration)/</OutDir>
</PropertyGroup>
<ItemDefinitionGroup>
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<PreprocessorDefinitions>WIN32;_MBCS;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>./;$(CudaToolkitDir)/include;../../Common;</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<AdditionalDependencies>cudart_static.lib;kernel32.lib;user32.lib;gdi32.lib;winspool.lib;comdlg32.lib;advapi32.lib;shell32.lib;ole32.lib;oleaut32.lib;uuid.lib;odbc32.lib;odbccp32.lib;%(AdditionalDependencies)</AdditionalDependencies>
<AdditionalLibraryDirectories>$(CudaToolkitLibDir);</AdditionalLibraryDirectories>
<OutputFile>$(OutDir)/bf16TensorCoreGemm.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>
</CudaCompile>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)'=='Debug'">
<ClCompile>
<Optimization>Disabled</Optimization>
<RuntimeLibrary>MultiThreadedDebug</RuntimeLibrary>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
<LinkTimeCodeGeneration>Default</LinkTimeCodeGeneration>
</Link>
<CudaCompile>
<Runtime>MTd</Runtime>
<TargetMachinePlatform>64</TargetMachinePlatform>
</CudaCompile>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)'=='Release'">
<ClCompile>
<Optimization>MaxSpeed</Optimization>
<RuntimeLibrary>MultiThreaded</RuntimeLibrary>
</ClCompile>
<Link>
<GenerateDebugInformation>false</GenerateDebugInformation>
<LinkTimeCodeGeneration>UseLinkTimeCodeGeneration</LinkTimeCodeGeneration>
</Link>
<CudaCompile>
<Runtime>MT</Runtime>
<TargetMachinePlatform>64</TargetMachinePlatform>
</CudaCompile>
</ItemDefinitionGroup>
<ItemGroup>
<CudaCompile Include="bf16TensorCoreGemm.cu" />
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
<Import Project="$(CUDAPropsPath)\CUDA 10.2.targets" />
</ImportGroup>
</Project>

View File

@ -0,0 +1,20 @@

Microsoft Visual Studio Solution File, Format Version 12.00
# Visual Studio 2019
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "bf16TensorCoreGemm", "bf16TensorCoreGemm_vs2019.vcxproj", "{997E0757-EA74-4A4E-A0FC-47D8C8831A15}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|x64 = Debug|x64
Release|x64 = Release|x64
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Debug|x64.ActiveCfg = Debug|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Debug|x64.Build.0 = Debug|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Release|x64.ActiveCfg = Release|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Release|x64.Build.0 = Release|x64
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
EndGlobal

View File

@ -0,0 +1,108 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<CUDAPropsPath Condition="'$(CUDAPropsPath)'==''">$(VCTargetsPath)\BuildCustomizations</CUDAPropsPath>
</PropertyGroup>
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|x64">
<Configuration>Debug</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|x64">
<Configuration>Release</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
</ItemGroup>
<PropertyGroup Label="Globals">
<ProjectGuid>{997E0757-EA74-4A4E-A0FC-47D8C8831A15}</ProjectGuid>
<RootNamespace>bf16TensorCoreGemm_vs2019</RootNamespace>
<ProjectName>bf16TensorCoreGemm</ProjectName>
<CudaToolkitCustomDir />
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup>
<ConfigurationType>Application</ConfigurationType>
<CharacterSet>MultiByte</CharacterSet>
<PlatformToolset>v142</PlatformToolset>
<WindowsTargetPlatformVersion>10.0</WindowsTargetPlatformVersion>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)'=='Debug'">
<UseDebugLibraries>true</UseDebugLibraries>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)'=='Release'">
<WholeProgramOptimization>true</WholeProgramOptimization>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
<Import Project="$(CUDAPropsPath)\CUDA 10.2.props" />
</ImportGroup>
<ImportGroup Label="PropertySheets">
<Import Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup>
<IntDir>$(Platform)/$(Configuration)/</IntDir>
<IncludePath>$(IncludePath)</IncludePath>
<CodeAnalysisRuleSet>AllRules.ruleset</CodeAnalysisRuleSet>
<CodeAnalysisRules />
<CodeAnalysisRuleAssemblies />
</PropertyGroup>
<PropertyGroup Condition="'$(Platform)'=='x64'">
<OutDir>../../bin/win64/$(Configuration)/</OutDir>
</PropertyGroup>
<ItemDefinitionGroup>
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<PreprocessorDefinitions>WIN32;_MBCS;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>./;$(CudaToolkitDir)/include;../../Common;</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<AdditionalDependencies>cudart_static.lib;kernel32.lib;user32.lib;gdi32.lib;winspool.lib;comdlg32.lib;advapi32.lib;shell32.lib;ole32.lib;oleaut32.lib;uuid.lib;odbc32.lib;odbccp32.lib;%(AdditionalDependencies)</AdditionalDependencies>
<AdditionalLibraryDirectories>$(CudaToolkitLibDir);</AdditionalLibraryDirectories>
<OutputFile>$(OutDir)/bf16TensorCoreGemm.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>
</CudaCompile>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)'=='Debug'">
<ClCompile>
<Optimization>Disabled</Optimization>
<RuntimeLibrary>MultiThreadedDebug</RuntimeLibrary>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
<LinkTimeCodeGeneration>Default</LinkTimeCodeGeneration>
</Link>
<CudaCompile>
<Runtime>MTd</Runtime>
<TargetMachinePlatform>64</TargetMachinePlatform>
</CudaCompile>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)'=='Release'">
<ClCompile>
<Optimization>MaxSpeed</Optimization>
<RuntimeLibrary>MultiThreaded</RuntimeLibrary>
</ClCompile>
<Link>
<GenerateDebugInformation>false</GenerateDebugInformation>
<LinkTimeCodeGeneration>UseLinkTimeCodeGeneration</LinkTimeCodeGeneration>
</Link>
<CudaCompile>
<Runtime>MT</Runtime>
<TargetMachinePlatform>64</TargetMachinePlatform>
</CudaCompile>
</ItemDefinitionGroup>
<ItemGroup>
<CudaCompile Include="bf16TensorCoreGemm.cu" />
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
<Import Project="$(CUDAPropsPath)\CUDA 10.2.targets" />
</ImportGroup>
</Project>

View File

@ -0,0 +1,360 @@
################################################################################
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
################################################################################
#
# Makefile project only supported on Mac OS X and Linux Platforms)
#
################################################################################
# Location of the CUDA Toolkit
CUDA_PATH ?= /usr/local/cuda
##############################
# start deprecated interface #
##############################
ifeq ($(x86_64),1)
$(info WARNING - x86_64 variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=x86_64 instead)
TARGET_ARCH ?= x86_64
endif
ifeq ($(ARMv7),1)
$(info WARNING - ARMv7 variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=armv7l instead)
TARGET_ARCH ?= armv7l
endif
ifeq ($(aarch64),1)
$(info WARNING - aarch64 variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=aarch64 instead)
TARGET_ARCH ?= aarch64
endif
ifeq ($(ppc64le),1)
$(info WARNING - ppc64le variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=ppc64le instead)
TARGET_ARCH ?= ppc64le
endif
ifneq ($(GCC),)
$(info WARNING - GCC variable has been deprecated)
$(info WARNING - please use HOST_COMPILER=$(GCC) instead)
HOST_COMPILER ?= $(GCC)
endif
ifneq ($(abi),)
$(error ERROR - abi variable has been removed)
endif
############################
# end deprecated interface #
############################
# architecture
HOST_ARCH := $(shell uname -m)
TARGET_ARCH ?= $(HOST_ARCH)
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le armv7l))
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le))
TARGET_SIZE := 64
else ifneq (,$(filter $(TARGET_ARCH),armv7l))
TARGET_SIZE := 32
endif
else
TARGET_SIZE := $(shell getconf LONG_BIT)
endif
else
$(error ERROR - unsupported value $(TARGET_ARCH) for TARGET_ARCH!)
endif
# sbsa and aarch64 systems look similar. Need to differentiate them at host level for now.
ifeq ($(HOST_ARCH),aarch64)
ifeq ($(CUDA_PATH)/targets/sbsa-linux,$(shell ls -1d $(CUDA_PATH)/targets/sbsa-linux))
HOST_ARCH := sbsa
TARGET_ARCH := sbsa
endif
endif
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq (,$(filter $(HOST_ARCH)-$(TARGET_ARCH),aarch64-armv7l x86_64-armv7l x86_64-aarch64 x86_64-sbsa x86_64-ppc64le))
$(error ERROR - cross compiling from $(HOST_ARCH) to $(TARGET_ARCH) is not supported!)
endif
endif
# When on native aarch64 system with userspace of 32-bit, change TARGET_ARCH to armv7l
ifeq ($(HOST_ARCH)-$(TARGET_ARCH)-$(TARGET_SIZE),aarch64-aarch64-32)
TARGET_ARCH = armv7l
endif
# operating system
HOST_OS := $(shell uname -s 2>/dev/null | tr "[:upper:]" "[:lower:]")
TARGET_OS ?= $(HOST_OS)
ifeq (,$(filter $(TARGET_OS),linux darwin qnx android))
$(error ERROR - unsupported value $(TARGET_OS) for TARGET_OS!)
endif
# host compiler
ifeq ($(TARGET_OS),darwin)
ifeq ($(shell expr `xcodebuild -version | grep -i xcode | awk '{print $$2}' | cut -d'.' -f1` \>= 5),1)
HOST_COMPILER ?= clang++
endif
else ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq ($(HOST_ARCH)-$(TARGET_ARCH),x86_64-armv7l)
ifeq ($(TARGET_OS),linux)
HOST_COMPILER ?= arm-linux-gnueabihf-g++
else ifeq ($(TARGET_OS),qnx)
ifeq ($(QNX_HOST),)
$(error ERROR - QNX_HOST must be passed to the QNX host toolchain)
endif
ifeq ($(QNX_TARGET),)
$(error ERROR - QNX_TARGET must be passed to the QNX target toolchain)
endif
export QNX_HOST
export QNX_TARGET
HOST_COMPILER ?= $(QNX_HOST)/usr/bin/arm-unknown-nto-qnx6.6.0eabi-g++
else ifeq ($(TARGET_OS),android)
HOST_COMPILER ?= arm-linux-androideabi-g++
endif
else ifeq ($(TARGET_ARCH),aarch64)
ifeq ($(TARGET_OS), linux)
HOST_COMPILER ?= aarch64-linux-gnu-g++
else ifeq ($(TARGET_OS),qnx)
ifeq ($(QNX_HOST),)
$(error ERROR - QNX_HOST must be passed to the QNX host toolchain)
endif
ifeq ($(QNX_TARGET),)
$(error ERROR - QNX_TARGET must be passed to the QNX target toolchain)
endif
export QNX_HOST
export QNX_TARGET
HOST_COMPILER ?= $(QNX_HOST)/usr/bin/aarch64-unknown-nto-qnx7.0.0-g++
else ifeq ($(TARGET_OS), android)
HOST_COMPILER ?= aarch64-linux-android-clang++
endif
else ifeq ($(TARGET_ARCH),sbsa)
HOST_COMPILER ?= aarch64-linux-gnu-g++
else ifeq ($(TARGET_ARCH),ppc64le)
HOST_COMPILER ?= powerpc64le-linux-gnu-g++
endif
endif
HOST_COMPILER ?= g++
NVCC := $(CUDA_PATH)/bin/nvcc -ccbin $(HOST_COMPILER)
# internal flags
NVCCFLAGS := -m${TARGET_SIZE}
CCFLAGS :=
LDFLAGS :=
# build flags
ifeq ($(TARGET_OS),darwin)
LDFLAGS += -rpath $(CUDA_PATH)/lib
CCFLAGS += -arch $(HOST_ARCH)
else ifeq ($(HOST_ARCH)-$(TARGET_ARCH)-$(TARGET_OS),x86_64-armv7l-linux)
LDFLAGS += --dynamic-linker=/lib/ld-linux-armhf.so.3
CCFLAGS += -mfloat-abi=hard
else ifeq ($(TARGET_OS),android)
LDFLAGS += -pie
CCFLAGS += -fpie -fpic -fexceptions
endif
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-linux)
ifneq ($(TARGET_FS),)
GCCVERSIONLTEQ46 := $(shell expr `$(HOST_COMPILER) -dumpversion` \<= 4.6)
ifeq ($(GCCVERSIONLTEQ46),1)
CCFLAGS += --sysroot=$(TARGET_FS)
endif
LDFLAGS += --sysroot=$(TARGET_FS)
LDFLAGS += -rpath-link=$(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/arm-linux-gnueabihf
endif
endif
ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-linux)
ifneq ($(TARGET_FS),)
GCCVERSIONLTEQ46 := $(shell expr `$(HOST_COMPILER) -dumpversion` \<= 4.6)
ifeq ($(GCCVERSIONLTEQ46),1)
CCFLAGS += --sysroot=$(TARGET_FS)
endif
LDFLAGS += --sysroot=$(TARGET_FS)
LDFLAGS += -rpath-link=$(TARGET_FS)/lib -L$(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/lib/aarch64-linux-gnu -L$(TARGET_FS)/lib/aarch64-linux-gnu
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib -L$(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/aarch64-linux-gnu -L$(TARGET_FS)/usr/lib/aarch64-linux-gnu
LDFLAGS += --unresolved-symbols=ignore-in-shared-libs
CCFLAGS += -isystem=$(TARGET_FS)/usr/include -I$(TARGET_FS)/usr/include
CCFLAGS += -isystem=$(TARGET_FS)/usr/include/aarch64-linux-gnu -I$(TARGET_FS)/usr/include/aarch64-linux-gnu
endif
endif
ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-qnx)
CCFLAGS += -DWIN_INTERFACE_CUSTOM -I/usr/include/aarch64-qnx-gnu
LDFLAGS += -lsocket
LDFLAGS += -rpath=/usr/lib/aarch64-qnx-gnu -L/usr/lib/aarch64-qnx-gnu
ifneq ($(TARGET_FS),)
LDFLAGS += -rpath=$(TARGET_FS)/usr/lib -L $(TARGET_FS)/usr/lib
LDFLAGS += -rpath=$(TARGET_FS)/usr/libnvidia -L $(TARGET_FS)/usr/libnvidia
endif
ifdef TARGET_OVERRIDE # cuda toolkit targets override
NVCCFLAGS += -target-dir $(TARGET_OVERRIDE)
endif
endif
endif
# Install directory of different arch
CUDA_INSTALL_TARGET_DIR :=
ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-linux)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-gnueabihf/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-linux)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),sbsa-linux)
CUDA_INSTALL_TARGET_DIR = targets/sbsa-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-android)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-androideabi/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-android)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-linux-androideabi/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-qnx)
CUDA_INSTALL_TARGET_DIR = targets/ARMv7-linux-QNX/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-qnx)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-qnx/
else ifeq ($(TARGET_ARCH),ppc64le)
CUDA_INSTALL_TARGET_DIR = targets/ppc64le-linux/
endif
# Debug build flags
ifeq ($(dbg),1)
NVCCFLAGS += -g -G
BUILD_TYPE := debug
else
BUILD_TYPE := release
endif
ALL_CCFLAGS :=
ALL_CCFLAGS += $(NVCCFLAGS)
ALL_CCFLAGS += $(EXTRA_NVCCFLAGS)
ALL_CCFLAGS += $(addprefix -Xcompiler ,$(CCFLAGS))
ALL_CCFLAGS += $(addprefix -Xcompiler ,$(EXTRA_CCFLAGS))
SAMPLE_ENABLED := 1
# This sample is not supported on Mac OSX
ifeq ($(TARGET_OS),darwin)
$(info >>> WARNING - binaryPartitionCG is not supported on Mac OSX - waiving sample <<<)
SAMPLE_ENABLED := 0
endif
ALL_LDFLAGS :=
ALL_LDFLAGS += $(ALL_CCFLAGS)
ALL_LDFLAGS += $(addprefix -Xlinker ,$(LDFLAGS))
ALL_LDFLAGS += $(addprefix -Xlinker ,$(EXTRA_LDFLAGS))
# Common includes and paths for CUDA
INCLUDES := -I../../Common
LIBRARIES :=
################################################################################
#Detect if installed version of GCC supports required C++11
ifeq ($(TARGET_OS),linux)
empty :=
space := $(empty) $(empty)
GCCVERSIONSTRING := $(shell expr `$(HOST_COMPILER) -dumpversion`)
#Create version number without "."
GCCVERSION := $(shell expr `echo $(GCCVERSIONSTRING)` | cut -f1 -d.)
GCCVERSION += $(shell expr `echo $(GCCVERSIONSTRING)` | cut -f2 -d.)
GCCVERSION += $(shell expr `echo $(GCCVERSIONSTRING)` | cut -f3 -d.)
# Make sure the version number has at least 3 decimals
GCCVERSION += 00
# Remove spaces from the version number
GCCVERSION := $(subst $(space),$(empty),$(GCCVERSION))
# Crop the version number to 3 decimals.
GCCVERSION := $(shell expr `echo $(GCCVERSION)` | cut -b1-3)
#$(warning $(GCCVERSION))
IS_MIN_VERSION := $(shell expr `echo $(GCCVERSION)` \>= 470)
ifeq ($(IS_MIN_VERSION), 1)
$(info >>> GCC Version is greater or equal to 4.7.0 <<<)
else
$(info >>> Waiving build. Minimum GCC version required is 4.7.0<<<)
SAMPLE_ENABLED := 0
endif
endif
# Gencode arguments
ifeq ($(TARGET_ARCH),$(filter $(TARGET_ARCH),armv7l aarch64))
SMS ?= 35 37 50 52 60 61 70 72 75 80
else
SMS ?= 35 37 50 52 60 61 70 75 80
endif
ifeq ($(SMS),)
$(info >>> WARNING - no SM architectures have been specified - waiving sample <<<)
SAMPLE_ENABLED := 0
endif
ifeq ($(GENCODE_FLAGS),)
# Generate SASS code for each SM architecture listed in $(SMS)
$(foreach sm,$(SMS),$(eval GENCODE_FLAGS += -gencode arch=compute_$(sm),code=sm_$(sm)))
# Generate PTX code from the highest SM architecture in $(SMS) to guarantee forward-compatibility
HIGHEST_SM := $(lastword $(sort $(SMS)))
ifneq ($(HIGHEST_SM),)
GENCODE_FLAGS += -gencode arch=compute_$(HIGHEST_SM),code=compute_$(HIGHEST_SM)
endif
endif
ALL_CCFLAGS += --std=c++11
ifeq ($(SAMPLE_ENABLED),0)
EXEC ?= @echo "[@]"
endif
################################################################################
# Target rules
all: build
build: binaryPartitionCG
check.deps:
ifeq ($(SAMPLE_ENABLED),0)
@echo "Sample will be waived due to the above missing dependencies"
else
@echo "Sample is ready - all dependencies have been met"
endif
binaryPartitionCG.o:binaryPartitionCG.cu
$(EXEC) $(NVCC) $(INCLUDES) $(ALL_CCFLAGS) $(GENCODE_FLAGS) -o $@ -c $<
binaryPartitionCG: binaryPartitionCG.o
$(EXEC) $(NVCC) $(ALL_LDFLAGS) $(GENCODE_FLAGS) -o $@ $+ $(LIBRARIES)
$(EXEC) mkdir -p ../../bin/$(TARGET_ARCH)/$(TARGET_OS)/$(BUILD_TYPE)
$(EXEC) cp $@ ../../bin/$(TARGET_ARCH)/$(TARGET_OS)/$(BUILD_TYPE)
run: build
$(EXEC) ./binaryPartitionCG
clean:
rm -f binaryPartitionCG binaryPartitionCG.o
rm -rf ../../bin/$(TARGET_ARCH)/$(TARGET_OS)/$(BUILD_TYPE)/binaryPartitionCG
clobber: clean

View File

@ -0,0 +1,64 @@
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE entry SYSTEM "SamplesInfo.dtd">
<entry>
<name>binaryPartitionCG</name>
<cflags>
<flag>--std=c++11</flag>
</cflags>
<description><![CDATA[This sample is a simple code that illustrates binary partition cooperative groups and reduce within the thread block.]]></description>
<devicecompilation>whole</devicecompilation>
<includepaths>
<path>./</path>
<path>../</path>
<path>../../common/inc</path>
</includepaths>
<keyconcepts>
<concept level="basic">Cooperative Groups</concept>
</keyconcepts>
<keywords>
<keyword>CUDA</keyword>
<keyword>Parallel Reduction</keyword>
<keyword>Cooperative Groups</keyword>
<keyword>CPP11</keyword>
</keywords>
<libraries>
</libraries>
<librarypaths>
</librarypaths>
<nsight_eclipse>true</nsight_eclipse>
<primary_file>binaryPartitionCG.cu</primary_file>
<scopes>
<scope>1:CUDA Basic Topics</scope>
</scopes>
<sm-arch>sm35</sm-arch>
<sm-arch>sm37</sm-arch>
<sm-arch>sm50</sm-arch>
<sm-arch>sm52</sm-arch>
<sm-arch>sm60</sm-arch>
<sm-arch>sm61</sm-arch>
<sm-arch>sm70</sm-arch>
<sm-arch>sm72</sm-arch>
<sm-arch>sm75</sm-arch>
<sm-arch>sm80</sm-arch>
<supported_envs>
<env>
<arch>x86_64</arch>
<platform>linux</platform>
</env>
<env>
<platform>windows7</platform>
</env>
<env>
<arch>arm</arch>
</env>
<env>
<arch>ppc64le</arch>
<platform>linux</platform>
</env>
</supported_envs>
<supported_sm_architectures>
<include>all</include>
</supported_sm_architectures>
<title>Binary Partition Cooperative Groups</title>
<type>exe</type>
</entry>

View File

@ -0,0 +1,67 @@
# binaryPartitionCG - Binary Partition Cooperative Groups
## Description
This sample is a simple code that illustrates binary partition cooperative groups and reduce within the thread block.
## Key Concepts
Cooperative Groups
## Supported SM Architectures
[SM 3.5 ](https://developer.nvidia.com/cuda-gpus) [SM 3.7 ](https://developer.nvidia.com/cuda-gpus) [SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus)
## Supported OSes
Linux, Windows
## Supported CPU Architecture
x86_64, ppc64le, armv7l
## CUDA APIs involved
## Prerequisites
Download and install the [CUDA Toolkit 11.0](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
## Build and Run
### Windows
The Windows samples are built using the Visual Studio IDE. Solution files (.sln) are provided for each supported version of Visual Studio, using the format:
```
*_vs<version>.sln - for Visual Studio <version>
```
Each individual sample has its own set of solution files in its directory:
To build/examine all the samples at once, the complete solution files should be used. To build/examine a single sample, the individual sample solution files should be used.
> **Note:** Some samples require that the Microsoft DirectX SDK (June 2010 or newer) be installed and that the VC++ directory paths are properly set up (**Tools > Options...**). Check DirectX Dependencies section for details."
### Linux
The Linux samples are built using makefiles. To use the makefiles, change the current directory to the sample directory you wish to build, and run make:
```
$ cd <sample_dir>
$ make
```
The samples makefiles can take advantage of certain options:
* **TARGET_ARCH=<arch>** - cross-compile targeting a specific architecture. Allowed architectures are x86_64, ppc64le, armv7l.
By default, TARGET_ARCH is set to HOST_ARCH. On a x86_64 machine, not setting TARGET_ARCH is the equivalent of setting TARGET_ARCH=x86_64.<br/>
`$ make TARGET_ARCH=x86_64` <br/> `$ make TARGET_ARCH=ppc64le` <br/> `$ make TARGET_ARCH=armv7l` <br/>
See [here](http://docs.nvidia.com/cuda/cuda-samples/index.html#cross-samples) for more details.
* **dbg=1** - build with debug symbols
```
$ make dbg=1
```
* **SMS="A B ..."** - override the SM architectures for which the sample will be built, where `"A B ..."` is a space-delimited list of SM architectures. For example, to generate SASS for SM 50 and SM 60, use `SMS="50 60"`.
```
$ make SMS="50 60"
```
* **HOST_COMPILER=<host_compiler>** - override the default g++ host compiler. See the [Linux Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#system-requirements) for a list of supported host compilers.
```
$ make HOST_COMPILER=g++
```
## References (for more details)

View File

@ -0,0 +1,155 @@
/* Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This sample illustrates basic usage of binary partition cooperative groups
* within the thread block tile when divergent path exists.
* 1.) Each thread loads a value from random array.
* 2.) then checks if it is odd or even.
* 3.) create binary partition group based on the above predicate
* 4.) we count the number of odd/even in the group based on size of the binary groups
* 5.) write it global counter of odd.
* 6.) sum the values loaded by individual threads(using reduce) and write it to global
* even & odd elements sum.
*
* **NOTE** : binary_partition results in splitting warp into divergent thread groups
this is not good from performance perspective, but in cases where warp
divergence is inevitable one can use binary_partition group.
*/
#include <stdio.h>
#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
#include <helper_cuda.h>
namespace cg = cooperative_groups;
void initOddEvenArr(int *inputArr, unsigned int size)
{
for (int i=0; i < size; i++)
{
inputArr[i] = rand() % 50;
}
}
/**
* CUDA kernel device code
*
* Creates cooperative groups and performs odd/even counting & summation.
*/
__global__ void oddEvenCountAndSumCG(int *inputArr, int *numOfOdds, int *sumOfOddAndEvens, unsigned int size)
{
cg::thread_block cta = cg::this_thread_block();
cg::grid_group grid = cg::this_grid();
cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta);
for (int i = grid.thread_rank(); i < size; i += grid.size())
{
int elem = inputArr[i];
auto subTile = cg::binary_partition(tile32, elem & 1);
if (elem & 1) // Odd numbers group
{
int oddGroupSum = cg::reduce(subTile, elem, cg::plus<int>());
if (subTile.thread_rank() == 0)
{
// Add number of odds present in this group of Odds.
atomicAdd(numOfOdds, subTile.size());
// Add local reduction of odds present in this group of Odds.
atomicAdd(&sumOfOddAndEvens[0], oddGroupSum);
}
}
else // Even numbers group
{
int evenGroupSum = cg::reduce(subTile, elem, cg::plus<int>());
if (subTile.thread_rank() == 0)
{
// Add local reduction of even present in this group of evens.
atomicAdd(&sumOfOddAndEvens[1], evenGroupSum);
}
}
// reconverge warp so for next loop iteration we ensure convergence of
// above diverged threads to perform coalesced loads of inputArr.
cg::sync(tile32);
}
}
/**
* Host main routine
*/
int main(int argc, const char **argv)
{
int deviceId = findCudaDevice(argc, argv);
int *h_inputArr, *d_inputArr;
int *h_numOfOdds, *d_numOfOdds;
int *h_sumOfOddEvenElems, *d_sumOfOddEvenElems;
unsigned int arrSize = 1024 * 100;
h_inputArr = new int[arrSize];
h_numOfOdds = new int[1];
h_sumOfOddEvenElems = new int[2];
initOddEvenArr(h_inputArr, arrSize);
cudaStream_t stream;
checkCudaErrors(cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking));
checkCudaErrors(cudaMalloc(&d_inputArr, sizeof(int)*arrSize));
checkCudaErrors(cudaMalloc(&d_numOfOdds, sizeof(int)));
checkCudaErrors(cudaMalloc(&d_sumOfOddEvenElems, sizeof(int)*2));
checkCudaErrors(cudaMemcpyAsync(d_inputArr, h_inputArr, sizeof(int)*arrSize, cudaMemcpyHostToDevice, stream));
checkCudaErrors(cudaMemsetAsync(d_numOfOdds, 0, sizeof(int), stream));
checkCudaErrors(cudaMemsetAsync(d_sumOfOddEvenElems, 0, 2*sizeof(int), stream));
//Launch the kernel
int threadsPerBlock=1024;
int blocksPerGrid = arrSize / threadsPerBlock;
printf("\nLaunching %d blocks with %d threads...\n\n",blocksPerGrid, threadsPerBlock);
oddEvenCountAndSumCG<<<blocksPerGrid, threadsPerBlock, 0, stream>>>(d_inputArr, d_numOfOdds, d_sumOfOddEvenElems, arrSize);
checkCudaErrors(cudaMemcpyAsync(h_numOfOdds, d_numOfOdds, sizeof(int), cudaMemcpyDeviceToHost, stream));
checkCudaErrors(cudaMemcpyAsync(h_sumOfOddEvenElems, d_sumOfOddEvenElems, 2*sizeof(int), cudaMemcpyDeviceToHost, stream));
printf("Array size = %d Num of Odds = %d Sum of Odds = %d Sum of Evens %d\n", arrSize, h_numOfOdds[0], h_sumOfOddEvenElems[0], h_sumOfOddEvenElems[1]);
printf("\n...Done.\n\n");
delete[] h_inputArr;
delete[] h_numOfOdds;
delete[] h_sumOfOddEvenElems;
checkCudaErrors(cudaFree(d_inputArr));
checkCudaErrors(cudaFree(d_numOfOdds));
checkCudaErrors(cudaFree(d_sumOfOddEvenElems));
return EXIT_SUCCESS;
}

View File

@ -0,0 +1,20 @@

Microsoft Visual Studio Solution File, Format Version 14.00
# Visual Studio 2015
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "binaryPartitionCG", "binaryPartitionCG_vs2015.vcxproj", "{997E0757-EA74-4A4E-A0FC-47D8C8831A15}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|x64 = Debug|x64
Release|x64 = Release|x64
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Debug|x64.ActiveCfg = Debug|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Debug|x64.Build.0 = Debug|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Release|x64.ActiveCfg = Release|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Release|x64.Build.0 = Release|x64
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
EndGlobal

View File

@ -0,0 +1,107 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<CUDAPropsPath Condition="'$(CUDAPropsPath)'==''">$(VCTargetsPath)\BuildCustomizations</CUDAPropsPath>
</PropertyGroup>
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|x64">
<Configuration>Debug</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|x64">
<Configuration>Release</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
</ItemGroup>
<PropertyGroup Label="Globals">
<ProjectGuid>{997E0757-EA74-4A4E-A0FC-47D8C8831A15}</ProjectGuid>
<RootNamespace>binaryPartitionCG_vs2015</RootNamespace>
<ProjectName>binaryPartitionCG</ProjectName>
<CudaToolkitCustomDir />
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup>
<ConfigurationType>Application</ConfigurationType>
<CharacterSet>MultiByte</CharacterSet>
<PlatformToolset>v140</PlatformToolset>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)'=='Debug'">
<UseDebugLibraries>true</UseDebugLibraries>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)'=='Release'">
<WholeProgramOptimization>true</WholeProgramOptimization>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
<Import Project="$(CUDAPropsPath)\CUDA 10.2.props" />
</ImportGroup>
<ImportGroup Label="PropertySheets">
<Import Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup>
<IntDir>$(Platform)/$(Configuration)/</IntDir>
<IncludePath>$(IncludePath)</IncludePath>
<CodeAnalysisRuleSet>AllRules.ruleset</CodeAnalysisRuleSet>
<CodeAnalysisRules />
<CodeAnalysisRuleAssemblies />
</PropertyGroup>
<PropertyGroup Condition="'$(Platform)'=='x64'">
<OutDir>../../bin/win64/$(Configuration)/</OutDir>
</PropertyGroup>
<ItemDefinitionGroup>
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<PreprocessorDefinitions>WIN32;_MBCS;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>./;$(CudaToolkitDir)/include;../../Common;</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<AdditionalDependencies>cudart_static.lib;kernel32.lib;user32.lib;gdi32.lib;winspool.lib;comdlg32.lib;advapi32.lib;shell32.lib;ole32.lib;oleaut32.lib;uuid.lib;odbc32.lib;odbccp32.lib;%(AdditionalDependencies)</AdditionalDependencies>
<AdditionalLibraryDirectories>$(CudaToolkitLibDir);</AdditionalLibraryDirectories>
<OutputFile>$(OutDir)/binaryPartitionCG.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>
</CudaCompile>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)'=='Debug'">
<ClCompile>
<Optimization>Disabled</Optimization>
<RuntimeLibrary>MultiThreadedDebug</RuntimeLibrary>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
<LinkTimeCodeGeneration>Default</LinkTimeCodeGeneration>
</Link>
<CudaCompile>
<Runtime>MTd</Runtime>
<TargetMachinePlatform>64</TargetMachinePlatform>
</CudaCompile>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)'=='Release'">
<ClCompile>
<Optimization>MaxSpeed</Optimization>
<RuntimeLibrary>MultiThreaded</RuntimeLibrary>
</ClCompile>
<Link>
<GenerateDebugInformation>false</GenerateDebugInformation>
<LinkTimeCodeGeneration>UseLinkTimeCodeGeneration</LinkTimeCodeGeneration>
</Link>
<CudaCompile>
<Runtime>MT</Runtime>
<TargetMachinePlatform>64</TargetMachinePlatform>
</CudaCompile>
</ItemDefinitionGroup>
<ItemGroup>
<CudaCompile Include="binaryPartitionCG.cu" />
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
<Import Project="$(CUDAPropsPath)\CUDA 10.2.targets" />
</ImportGroup>
</Project>

View File

@ -0,0 +1,20 @@

Microsoft Visual Studio Solution File, Format Version 12.00
# Visual Studio 2017
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "binaryPartitionCG", "binaryPartitionCG_vs2017.vcxproj", "{997E0757-EA74-4A4E-A0FC-47D8C8831A15}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|x64 = Debug|x64
Release|x64 = Release|x64
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Debug|x64.ActiveCfg = Debug|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Debug|x64.Build.0 = Debug|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Release|x64.ActiveCfg = Release|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Release|x64.Build.0 = Release|x64
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
EndGlobal

View File

@ -0,0 +1,112 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<CUDAPropsPath Condition="'$(CUDAPropsPath)'==''">$(VCTargetsPath)\BuildCustomizations</CUDAPropsPath>
</PropertyGroup>
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|x64">
<Configuration>Debug</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|x64">
<Configuration>Release</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
</ItemGroup>
<PropertyGroup Label="Globals">
<ProjectGuid>{997E0757-EA74-4A4E-A0FC-47D8C8831A15}</ProjectGuid>
<RootNamespace>binaryPartitionCG_vs2017</RootNamespace>
<ProjectName>binaryPartitionCG</ProjectName>
<CudaToolkitCustomDir />
</PropertyGroup>
<PropertyGroup Condition="'$(WindowsTargetPlatformVersion)'==''">
<LatestTargetPlatformVersion>$([Microsoft.Build.Utilities.ToolLocationHelper]::GetLatestSDKTargetPlatformVersion('Windows', '10.0'))</LatestTargetPlatformVersion>
<WindowsTargetPlatformVersion Condition="'$(WindowsTargetPlatformVersion)' == ''">$(LatestTargetPlatformVersion)</WindowsTargetPlatformVersion>
<TargetPlatformVersion>$(WindowsTargetPlatformVersion)</TargetPlatformVersion>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup>
<ConfigurationType>Application</ConfigurationType>
<CharacterSet>MultiByte</CharacterSet>
<PlatformToolset>v141</PlatformToolset>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)'=='Debug'">
<UseDebugLibraries>true</UseDebugLibraries>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)'=='Release'">
<WholeProgramOptimization>true</WholeProgramOptimization>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
<Import Project="$(CUDAPropsPath)\CUDA 10.2.props" />
</ImportGroup>
<ImportGroup Label="PropertySheets">
<Import Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup>
<IntDir>$(Platform)/$(Configuration)/</IntDir>
<IncludePath>$(IncludePath)</IncludePath>
<CodeAnalysisRuleSet>AllRules.ruleset</CodeAnalysisRuleSet>
<CodeAnalysisRules />
<CodeAnalysisRuleAssemblies />
</PropertyGroup>
<PropertyGroup Condition="'$(Platform)'=='x64'">
<OutDir>../../bin/win64/$(Configuration)/</OutDir>
</PropertyGroup>
<ItemDefinitionGroup>
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<PreprocessorDefinitions>WIN32;_MBCS;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>./;$(CudaToolkitDir)/include;../../Common;</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<AdditionalDependencies>cudart_static.lib;kernel32.lib;user32.lib;gdi32.lib;winspool.lib;comdlg32.lib;advapi32.lib;shell32.lib;ole32.lib;oleaut32.lib;uuid.lib;odbc32.lib;odbccp32.lib;%(AdditionalDependencies)</AdditionalDependencies>
<AdditionalLibraryDirectories>$(CudaToolkitLibDir);</AdditionalLibraryDirectories>
<OutputFile>$(OutDir)/binaryPartitionCG.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>
</CudaCompile>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)'=='Debug'">
<ClCompile>
<Optimization>Disabled</Optimization>
<RuntimeLibrary>MultiThreadedDebug</RuntimeLibrary>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
<LinkTimeCodeGeneration>Default</LinkTimeCodeGeneration>
</Link>
<CudaCompile>
<Runtime>MTd</Runtime>
<TargetMachinePlatform>64</TargetMachinePlatform>
</CudaCompile>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)'=='Release'">
<ClCompile>
<Optimization>MaxSpeed</Optimization>
<RuntimeLibrary>MultiThreaded</RuntimeLibrary>
</ClCompile>
<Link>
<GenerateDebugInformation>false</GenerateDebugInformation>
<LinkTimeCodeGeneration>UseLinkTimeCodeGeneration</LinkTimeCodeGeneration>
</Link>
<CudaCompile>
<Runtime>MT</Runtime>
<TargetMachinePlatform>64</TargetMachinePlatform>
</CudaCompile>
</ItemDefinitionGroup>
<ItemGroup>
<CudaCompile Include="binaryPartitionCG.cu" />
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
<Import Project="$(CUDAPropsPath)\CUDA 10.2.targets" />
</ImportGroup>
</Project>

View File

@ -0,0 +1,20 @@

Microsoft Visual Studio Solution File, Format Version 12.00
# Visual Studio 2019
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "binaryPartitionCG", "binaryPartitionCG_vs2019.vcxproj", "{997E0757-EA74-4A4E-A0FC-47D8C8831A15}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|x64 = Debug|x64
Release|x64 = Release|x64
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Debug|x64.ActiveCfg = Debug|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Debug|x64.Build.0 = Debug|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Release|x64.ActiveCfg = Release|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Release|x64.Build.0 = Release|x64
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
EndGlobal

View File

@ -0,0 +1,108 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<CUDAPropsPath Condition="'$(CUDAPropsPath)'==''">$(VCTargetsPath)\BuildCustomizations</CUDAPropsPath>
</PropertyGroup>
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|x64">
<Configuration>Debug</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|x64">
<Configuration>Release</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
</ItemGroup>
<PropertyGroup Label="Globals">
<ProjectGuid>{997E0757-EA74-4A4E-A0FC-47D8C8831A15}</ProjectGuid>
<RootNamespace>binaryPartitionCG_vs2019</RootNamespace>
<ProjectName>binaryPartitionCG</ProjectName>
<CudaToolkitCustomDir />
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup>
<ConfigurationType>Application</ConfigurationType>
<CharacterSet>MultiByte</CharacterSet>
<PlatformToolset>v142</PlatformToolset>
<WindowsTargetPlatformVersion>10.0</WindowsTargetPlatformVersion>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)'=='Debug'">
<UseDebugLibraries>true</UseDebugLibraries>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)'=='Release'">
<WholeProgramOptimization>true</WholeProgramOptimization>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
<Import Project="$(CUDAPropsPath)\CUDA 10.2.props" />
</ImportGroup>
<ImportGroup Label="PropertySheets">
<Import Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup>
<IntDir>$(Platform)/$(Configuration)/</IntDir>
<IncludePath>$(IncludePath)</IncludePath>
<CodeAnalysisRuleSet>AllRules.ruleset</CodeAnalysisRuleSet>
<CodeAnalysisRules />
<CodeAnalysisRuleAssemblies />
</PropertyGroup>
<PropertyGroup Condition="'$(Platform)'=='x64'">
<OutDir>../../bin/win64/$(Configuration)/</OutDir>
</PropertyGroup>
<ItemDefinitionGroup>
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<PreprocessorDefinitions>WIN32;_MBCS;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>./;$(CudaToolkitDir)/include;../../Common;</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<AdditionalDependencies>cudart_static.lib;kernel32.lib;user32.lib;gdi32.lib;winspool.lib;comdlg32.lib;advapi32.lib;shell32.lib;ole32.lib;oleaut32.lib;uuid.lib;odbc32.lib;odbccp32.lib;%(AdditionalDependencies)</AdditionalDependencies>
<AdditionalLibraryDirectories>$(CudaToolkitLibDir);</AdditionalLibraryDirectories>
<OutputFile>$(OutDir)/binaryPartitionCG.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>
</CudaCompile>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)'=='Debug'">
<ClCompile>
<Optimization>Disabled</Optimization>
<RuntimeLibrary>MultiThreadedDebug</RuntimeLibrary>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
<LinkTimeCodeGeneration>Default</LinkTimeCodeGeneration>
</Link>
<CudaCompile>
<Runtime>MTd</Runtime>
<TargetMachinePlatform>64</TargetMachinePlatform>
</CudaCompile>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)'=='Release'">
<ClCompile>
<Optimization>MaxSpeed</Optimization>
<RuntimeLibrary>MultiThreaded</RuntimeLibrary>
</ClCompile>
<Link>
<GenerateDebugInformation>false</GenerateDebugInformation>
<LinkTimeCodeGeneration>UseLinkTimeCodeGeneration</LinkTimeCodeGeneration>
</Link>
<CudaCompile>
<Runtime>MT</Runtime>
<TargetMachinePlatform>64</TargetMachinePlatform>
</CudaCompile>
</ItemDefinitionGroup>
<ItemGroup>
<CudaCompile Include="binaryPartitionCG.cu" />
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
<Import Project="$(CUDAPropsPath)\CUDA 10.2.targets" />
</ImportGroup>
</Project>

View File

@ -72,9 +72,9 @@ endif
# architecture
HOST_ARCH := $(shell uname -m)
TARGET_ARCH ?= $(HOST_ARCH)
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le armv7l))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le armv7l))
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le))
TARGET_SIZE := 64
else ifneq (,$(filter $(TARGET_ARCH),armv7l))
TARGET_SIZE := 32
@ -85,8 +85,17 @@ ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le armv7l))
else
$(error ERROR - unsupported value $(TARGET_ARCH) for TARGET_ARCH!)
endif
# sbsa and aarch64 systems look similar. Need to differentiate them at host level for now.
ifeq ($(HOST_ARCH),aarch64)
ifeq ($(CUDA_PATH)/targets/sbsa-linux,$(shell ls -1d $(CUDA_PATH)/targets/sbsa-linux))
HOST_ARCH := sbsa
TARGET_ARCH := sbsa
endif
endif
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq (,$(filter $(HOST_ARCH)-$(TARGET_ARCH),aarch64-armv7l x86_64-armv7l x86_64-aarch64 x86_64-ppc64le))
ifeq (,$(filter $(HOST_ARCH)-$(TARGET_ARCH),aarch64-armv7l x86_64-armv7l x86_64-aarch64 x86_64-sbsa x86_64-ppc64le))
$(error ERROR - cross compiling from $(HOST_ARCH) to $(TARGET_ARCH) is not supported!)
endif
endif
@ -141,6 +150,8 @@ else ifneq ($(TARGET_ARCH),$(HOST_ARCH))
else ifeq ($(TARGET_OS), android)
HOST_COMPILER ?= aarch64-linux-android-clang++
endif
else ifeq ($(TARGET_ARCH),sbsa)
HOST_COMPILER ?= aarch64-linux-gnu-g++
else ifeq ($(TARGET_ARCH),ppc64le)
HOST_COMPILER ?= powerpc64le-linux-gnu-g++
endif
@ -185,19 +196,27 @@ ifneq ($(TARGET_ARCH),$(HOST_ARCH))
CCFLAGS += --sysroot=$(TARGET_FS)
endif
LDFLAGS += --sysroot=$(TARGET_FS)
LDFLAGS += -rpath-link=$(TARGET_FS)/lib -L $(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib -L $(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/aarch64-linux-gnu -L $(TARGET_FS)/usr/lib/aarch64-linux-gnu
LDFLAGS += -rpath-link=$(TARGET_FS)/lib -L$(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/lib/aarch64-linux-gnu -L$(TARGET_FS)/lib/aarch64-linux-gnu
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib -L$(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/aarch64-linux-gnu -L$(TARGET_FS)/usr/lib/aarch64-linux-gnu
LDFLAGS += --unresolved-symbols=ignore-in-shared-libs
CCFLAGS += -isystem=$(TARGET_FS)/usr/include
CCFLAGS += -isystem=$(TARGET_FS)/usr/include/aarch64-linux-gnu
CCFLAGS += -isystem=$(TARGET_FS)/usr/include -I$(TARGET_FS)/usr/include
CCFLAGS += -isystem=$(TARGET_FS)/usr/include/aarch64-linux-gnu -I$(TARGET_FS)/usr/include/aarch64-linux-gnu
endif
endif
endif
ifeq ($(TARGET_OS),qnx)
CCFLAGS += -DWIN_INTERFACE_CUSTOM
ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-qnx)
CCFLAGS += -DWIN_INTERFACE_CUSTOM -I/usr/include/aarch64-qnx-gnu
LDFLAGS += -lsocket
LDFLAGS += -rpath=/usr/lib/aarch64-qnx-gnu -L/usr/lib/aarch64-qnx-gnu
ifneq ($(TARGET_FS),)
LDFLAGS += -rpath=$(TARGET_FS)/usr/lib -L $(TARGET_FS)/usr/lib
LDFLAGS += -rpath=$(TARGET_FS)/usr/libnvidia -L $(TARGET_FS)/usr/libnvidia
endif
ifdef TARGET_OVERRIDE # cuda toolkit targets override
NVCCFLAGS += -target-dir $(TARGET_OVERRIDE)
endif
endif
endif
# Install directory of different arch
@ -206,6 +225,8 @@ ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-linux)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-gnueabihf/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-linux)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),sbsa-linux)
CUDA_INSTALL_TARGET_DIR = targets/sbsa-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-android)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-androideabi/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-android)
@ -259,8 +280,8 @@ ifeq ($(GENCODE_FLAGS),)
$(foreach sm,$(SMS),$(eval GENCODE_FLAGS += -gencode arch=compute_$(sm),code=sm_$(sm)))
ifeq ($(SMS),)
# Generate PTX code from SM 30
GENCODE_FLAGS += -gencode arch=compute_30,code=compute_30
# Generate PTX code from SM 35
GENCODE_FLAGS += -gencode arch=compute_35,code=compute_35
endif
# Generate PTX code from the highest SM architecture in $(SMS) to guarantee forward-compatibility

View File

@ -0,0 +1,87 @@
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE entry SYSTEM "SamplesInfo.dtd">
<entry>
<name>boxFilterNPP</name>
<description><![CDATA[A NPP CUDA Sample that demonstrates how to use NPP FilterBox function to perform a Box Filter.]]></description>
<devicecompilation>whole</devicecompilation>
<fallback_min_ptx>true</fallback_min_ptx>
<files>
<file>./Lena.pgm</file>
</files>
<includepaths>
<path>../../Common/UtilNPP</path>
<path>../../Common/FreeImage/include</path>
<path>./</path>
<path>../</path>
<path>../../common/inc</path>
</includepaths>
<keyconcepts>
<concept level="basic">Performance Strategies</concept>
<concept level="basic">Image Processing</concept>
<concept level="basic">NPP Library</concept>
</keyconcepts>
<keywords>
<keyword>CUDA</keyword>
<keyword>NPP</keyword>
<keyword>Image Processing</keyword>
<keyword>box filter</keyword>
</keywords>
<libraries>
<library>nppisu_static</library>
<library>nppif_static</library>
<library>nppc_static</library>
<library>culibos</library>
<library>freeimage</library>
</libraries>
<librarypaths>
<path>../../Common/FreeImage/lib/$(TARGET_OS)</path>
<path>../../Common/FreeImage/lib/$(TARGET_OS)/$(TARGET_ARCH)</path>
</librarypaths>
<nsight_eclipse>true</nsight_eclipse>
<primary_file>boxFilterNPP.cpp</primary_file>
<required_dependencies>
<dependency>FreeImage</dependency>
<dependency>NPP</dependency>
</required_dependencies>
<scopes>
<scope>1:CUDA Basic Topics</scope>
<scope>1:Performance Strategies</scope>
<scope>2:Image Processing</scope>
<scope>2:Computer Vision</scope>
</scopes>
<sm-arch>sm35</sm-arch>
<sm-arch>sm37</sm-arch>
<sm-arch>sm50</sm-arch>
<sm-arch>sm52</sm-arch>
<sm-arch>sm60</sm-arch>
<sm-arch>sm61</sm-arch>
<sm-arch>sm70</sm-arch>
<sm-arch>sm72</sm-arch>
<sm-arch>sm75</sm-arch>
<sm-arch>sm80</sm-arch>
<supported_envs>
<env>
<arch>x86_64</arch>
<platform>linux</platform>
</env>
<env>
<platform>windows7</platform>
</env>
<env>
<arch>x86_64</arch>
<platform>macosx</platform>
</env>
<env>
<arch>arm</arch>
</env>
<env>
<arch>ppc64le</arch>
<platform>linux</platform>
</env>
</supported_envs>
<supported_sm_architectures>
<include>all</include>
</supported_sm_architectures>
<title>Box Filter with NPP</title>
<type>exe</type>
</entry>

View File

@ -10,11 +10,11 @@ Performance Strategies, Image Processing, NPP Library
## Supported SM Architectures
[SM 3.0 ](https://developer.nvidia.com/cuda-gpus) [SM 3.5 ](https://developer.nvidia.com/cuda-gpus) [SM 3.7 ](https://developer.nvidia.com/cuda-gpus) [SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus)
[SM 3.5 ](https://developer.nvidia.com/cuda-gpus) [SM 3.7 ](https://developer.nvidia.com/cuda-gpus) [SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus)
## Supported OSes
Linux, Windows, MacOSX
Linux, Windows
## Supported CPU Architecture
@ -27,7 +27,7 @@ x86_64, ppc64le, armv7l
## Prerequisites
Download and install the [CUDA Toolkit 10.2](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
Download and install the [CUDA Toolkit 11.0](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
Make sure the dependencies mentioned in [Dependencies]() section above are installed.
## Build and Run
@ -67,29 +67,5 @@ The samples makefiles can take advantage of certain options:
$ make HOST_COMPILER=g++
```
### Mac
The Mac samples are built using makefiles. To use the makefiles, change directory into the sample directory you wish to build, and run make:
```
$ cd <sample_dir>
$ make
```
The samples makefiles can take advantage of certain options:
* **dbg=1** - build with debug symbols
```
$ make dbg=1
```
* **SMS="A B ..."** - override the SM architectures for which the sample will be built, where "A B ..." is a space-delimited list of SM architectures. For example, to generate SASS for SM 50 and SM 60, use SMS="50 60".
```
$ make SMS="A B ..."
```
* **HOST_COMPILER=<host_compiler>** - override the default clang host compiler. See the [Mac Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#system-requirements) for a list of supported host compilers.
```
$ make HOST_COMPILER=clang
```
## References (for more details)

View File

@ -62,7 +62,7 @@
<OutputFile>$(OutDir)/boxFilterNPP.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,compute_30;</CodeGeneration>
<CodeGeneration>compute_35,compute_35;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -62,7 +62,7 @@
<OutputFile>$(OutDir)/boxFilterNPP.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,compute_30;</CodeGeneration>
<CodeGeneration>compute_35,compute_35;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -62,7 +62,7 @@
<OutputFile>$(OutDir)/boxFilterNPP.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,compute_30;</CodeGeneration>
<CodeGeneration>compute_35,compute_35;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -67,7 +67,7 @@
<OutputFile>$(OutDir)/boxFilterNPP.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,compute_30;</CodeGeneration>
<CodeGeneration>compute_35,compute_35;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -63,7 +63,7 @@
<OutputFile>$(OutDir)/boxFilterNPP.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,compute_30;</CodeGeneration>
<CodeGeneration>compute_35,compute_35;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -72,9 +72,9 @@ endif
# architecture
HOST_ARCH := $(shell uname -m)
TARGET_ARCH ?= $(HOST_ARCH)
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le armv7l))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le armv7l))
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le))
TARGET_SIZE := 64
else ifneq (,$(filter $(TARGET_ARCH),armv7l))
TARGET_SIZE := 32
@ -85,8 +85,17 @@ ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le armv7l))
else
$(error ERROR - unsupported value $(TARGET_ARCH) for TARGET_ARCH!)
endif
# sbsa and aarch64 systems look similar. Need to differentiate them at host level for now.
ifeq ($(HOST_ARCH),aarch64)
ifeq ($(CUDA_PATH)/targets/sbsa-linux,$(shell ls -1d $(CUDA_PATH)/targets/sbsa-linux))
HOST_ARCH := sbsa
TARGET_ARCH := sbsa
endif
endif
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq (,$(filter $(HOST_ARCH)-$(TARGET_ARCH),aarch64-armv7l x86_64-armv7l x86_64-aarch64 x86_64-ppc64le))
ifeq (,$(filter $(HOST_ARCH)-$(TARGET_ARCH),aarch64-armv7l x86_64-armv7l x86_64-aarch64 x86_64-sbsa x86_64-ppc64le))
$(error ERROR - cross compiling from $(HOST_ARCH) to $(TARGET_ARCH) is not supported!)
endif
endif
@ -141,6 +150,8 @@ else ifneq ($(TARGET_ARCH),$(HOST_ARCH))
else ifeq ($(TARGET_OS), android)
HOST_COMPILER ?= aarch64-linux-android-clang++
endif
else ifeq ($(TARGET_ARCH),sbsa)
HOST_COMPILER ?= aarch64-linux-gnu-g++
else ifeq ($(TARGET_ARCH),ppc64le)
HOST_COMPILER ?= powerpc64le-linux-gnu-g++
endif
@ -185,19 +196,27 @@ ifneq ($(TARGET_ARCH),$(HOST_ARCH))
CCFLAGS += --sysroot=$(TARGET_FS)
endif
LDFLAGS += --sysroot=$(TARGET_FS)
LDFLAGS += -rpath-link=$(TARGET_FS)/lib -L $(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib -L $(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/aarch64-linux-gnu -L $(TARGET_FS)/usr/lib/aarch64-linux-gnu
LDFLAGS += -rpath-link=$(TARGET_FS)/lib -L$(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/lib/aarch64-linux-gnu -L$(TARGET_FS)/lib/aarch64-linux-gnu
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib -L$(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/aarch64-linux-gnu -L$(TARGET_FS)/usr/lib/aarch64-linux-gnu
LDFLAGS += --unresolved-symbols=ignore-in-shared-libs
CCFLAGS += -isystem=$(TARGET_FS)/usr/include
CCFLAGS += -isystem=$(TARGET_FS)/usr/include/aarch64-linux-gnu
CCFLAGS += -isystem=$(TARGET_FS)/usr/include -I$(TARGET_FS)/usr/include
CCFLAGS += -isystem=$(TARGET_FS)/usr/include/aarch64-linux-gnu -I$(TARGET_FS)/usr/include/aarch64-linux-gnu
endif
endif
endif
ifeq ($(TARGET_OS),qnx)
CCFLAGS += -DWIN_INTERFACE_CUSTOM
ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-qnx)
CCFLAGS += -DWIN_INTERFACE_CUSTOM -I/usr/include/aarch64-qnx-gnu
LDFLAGS += -lsocket
LDFLAGS += -rpath=/usr/lib/aarch64-qnx-gnu -L/usr/lib/aarch64-qnx-gnu
ifneq ($(TARGET_FS),)
LDFLAGS += -rpath=$(TARGET_FS)/usr/lib -L $(TARGET_FS)/usr/lib
LDFLAGS += -rpath=$(TARGET_FS)/usr/libnvidia -L $(TARGET_FS)/usr/libnvidia
endif
ifdef TARGET_OVERRIDE # cuda toolkit targets override
NVCCFLAGS += -target-dir $(TARGET_OVERRIDE)
endif
endif
endif
# Install directory of different arch
@ -206,6 +225,8 @@ ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-linux)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-gnueabihf/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-linux)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),sbsa-linux)
CUDA_INSTALL_TARGET_DIR = targets/sbsa-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-android)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-androideabi/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-android)
@ -259,8 +280,8 @@ ifeq ($(GENCODE_FLAGS),)
$(foreach sm,$(SMS),$(eval GENCODE_FLAGS += -gencode arch=compute_$(sm),code=sm_$(sm)))
ifeq ($(SMS),)
# Generate PTX code from SM 30
GENCODE_FLAGS += -gencode arch=compute_30,code=compute_30
# Generate PTX code from SM 35
GENCODE_FLAGS += -gencode arch=compute_35,code=compute_35
endif
# Generate PTX code from the highest SM architecture in $(SMS) to guarantee forward-compatibility

View File

@ -0,0 +1,83 @@
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE entry SYSTEM "SamplesInfo.dtd">
<entry>
<name>cannyEdgeDetectorNPP</name>
<description><![CDATA[An NPP CUDA Sample that demonstrates the recommended parameters to use with the nppiFilterCannyBorder_8u_C1R Canny Edge Detection image filter function. This function expects a single channel 8-bit grayscale input image. You can generate a grayscale image from a color image by first calling nppiColorToGray() or nppiRGBToGray(). The Canny Edge Detection function combines and improves on the techniques required to produce an edge detection image using multiple steps.]]></description>
<devicecompilation>whole</devicecompilation>
<fallback_min_ptx>true</fallback_min_ptx>
<includepaths>
<path>../../Common/UtilNPP</path>
<path>../../Common/FreeImage/include</path>
<path>./</path>
<path>../</path>
<path>../../common/inc</path>
</includepaths>
<keyconcepts>
<concept level="basic">Performance Strategies</concept>
<concept level="basic">Image Processing</concept>
<concept level="basic">NPP Library</concept>
</keyconcepts>
<keywords>
<keyword>CUDA</keyword>
<keyword>NPP</keyword>
<keyword>Image Processing</keyword>
</keywords>
<libraries>
<library>nppisu_static</library>
<library>nppif_static</library>
<library>nppc_static</library>
<library>culibos</library>
<library>freeimage</library>
</libraries>
<librarypaths>
<path>../../Common/FreeImage/lib/$(TARGET_OS)</path>
<path>../../Common/FreeImage/lib/$(TARGET_OS)/$(TARGET_ARCH)</path>
</librarypaths>
<nsight_eclipse>true</nsight_eclipse>
<primary_file>cannyEdgeDetectorNPP.cpp</primary_file>
<required_dependencies>
<dependency>FreeImage</dependency>
<dependency>NPP</dependency>
</required_dependencies>
<scopes>
<scope>1:CUDA Basic Topics</scope>
<scope>1:Performance Strategies</scope>
<scope>2:Image Processing</scope>
<scope>2:Computer Vision</scope>
</scopes>
<sm-arch>sm35</sm-arch>
<sm-arch>sm37</sm-arch>
<sm-arch>sm50</sm-arch>
<sm-arch>sm52</sm-arch>
<sm-arch>sm60</sm-arch>
<sm-arch>sm61</sm-arch>
<sm-arch>sm70</sm-arch>
<sm-arch>sm72</sm-arch>
<sm-arch>sm75</sm-arch>
<sm-arch>sm80</sm-arch>
<supported_envs>
<env>
<arch>x86_64</arch>
<platform>linux</platform>
</env>
<env>
<platform>windows7</platform>
</env>
<env>
<arch>x86_64</arch>
<platform>macosx</platform>
</env>
<env>
<arch>arm</arch>
</env>
<env>
<arch>ppc64le</arch>
<platform>linux</platform>
</env>
</supported_envs>
<supported_sm_architectures>
<include>all</include>
</supported_sm_architectures>
<title>Canny Edge Detector NPP</title>
<type>exe</type>
</entry>

View File

@ -10,11 +10,11 @@ Performance Strategies, Image Processing, NPP Library
## Supported SM Architectures
[SM 3.0 ](https://developer.nvidia.com/cuda-gpus) [SM 3.5 ](https://developer.nvidia.com/cuda-gpus) [SM 3.7 ](https://developer.nvidia.com/cuda-gpus) [SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus)
[SM 3.5 ](https://developer.nvidia.com/cuda-gpus) [SM 3.7 ](https://developer.nvidia.com/cuda-gpus) [SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus)
## Supported OSes
Linux, Windows, MacOSX
Linux, Windows
## Supported CPU Architecture
@ -27,7 +27,7 @@ x86_64, ppc64le, armv7l
## Prerequisites
Download and install the [CUDA Toolkit 10.2](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
Download and install the [CUDA Toolkit 11.0](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
Make sure the dependencies mentioned in [Dependencies]() section above are installed.
## Build and Run
@ -67,29 +67,5 @@ The samples makefiles can take advantage of certain options:
$ make HOST_COMPILER=g++
```
### Mac
The Mac samples are built using makefiles. To use the makefiles, change directory into the sample directory you wish to build, and run make:
```
$ cd <sample_dir>
$ make
```
The samples makefiles can take advantage of certain options:
* **dbg=1** - build with debug symbols
```
$ make dbg=1
```
* **SMS="A B ..."** - override the SM architectures for which the sample will be built, where "A B ..." is a space-delimited list of SM architectures. For example, to generate SASS for SM 50 and SM 60, use SMS="50 60".
```
$ make SMS="A B ..."
```
* **HOST_COMPILER=<host_compiler>** - override the default clang host compiler. See the [Mac Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#system-requirements) for a list of supported host compilers.
```
$ make HOST_COMPILER=clang
```
## References (for more details)

View File

@ -47,6 +47,27 @@
#include <helper_cuda.h>
#include <helper_string.h>
inline int cudaDeviceInit(int argc, const char **argv) {
int deviceCount;
checkCudaErrors(cudaGetDeviceCount(&deviceCount));
if (deviceCount == 0) {
std::cerr << "CUDA error: no devices supporting CUDA." << std::endl;
exit(EXIT_FAILURE);
}
int dev = findCudaDevice(argc, argv);
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, dev);
std::cerr << "cudaSetDevice GPU" << dev << " = " << deviceProp.name
<< std::endl;
checkCudaErrors(cudaSetDevice(dev));
return dev;
}
bool printfNPPinfo(int argc, char *argv[]) {
const NppLibraryVersion *libVer = nppGetLibVersion();
@ -74,7 +95,7 @@ int main(int argc, char *argv[]) {
std::string sFilename;
char *filePath;
int dev = findCudaDevice(argc, (const char **)argv);
cudaDeviceInit(argc, (const char **)argv);
if (printfNPPinfo(argc, argv) == false) {
exit(EXIT_SUCCESS);

View File

@ -62,7 +62,7 @@
<OutputFile>$(OutDir)/cannyEdgeDetectorNPP.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,compute_30;</CodeGeneration>
<CodeGeneration>compute_35,compute_35;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -62,7 +62,7 @@
<OutputFile>$(OutDir)/cannyEdgeDetectorNPP.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,compute_30;</CodeGeneration>
<CodeGeneration>compute_35,compute_35;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -62,7 +62,7 @@
<OutputFile>$(OutDir)/cannyEdgeDetectorNPP.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,compute_30;</CodeGeneration>
<CodeGeneration>compute_35,compute_35;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -67,7 +67,7 @@
<OutputFile>$(OutDir)/cannyEdgeDetectorNPP.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,compute_30;</CodeGeneration>
<CodeGeneration>compute_35,compute_35;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -63,7 +63,7 @@
<OutputFile>$(OutDir)/cannyEdgeDetectorNPP.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,compute_30;</CodeGeneration>
<CodeGeneration>compute_35,compute_35;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -0,0 +1,325 @@
################################################################################
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of NVIDIA CORPORATION nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
# EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
# PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
# CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
# PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
# OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#
################################################################################
#
# Makefile project only supported on Mac OS X and Linux Platforms)
#
################################################################################
# Location of the CUDA Toolkit
CUDA_PATH ?= /usr/local/cuda
##############################
# start deprecated interface #
##############################
ifeq ($(x86_64),1)
$(info WARNING - x86_64 variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=x86_64 instead)
TARGET_ARCH ?= x86_64
endif
ifeq ($(ARMv7),1)
$(info WARNING - ARMv7 variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=armv7l instead)
TARGET_ARCH ?= armv7l
endif
ifeq ($(aarch64),1)
$(info WARNING - aarch64 variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=aarch64 instead)
TARGET_ARCH ?= aarch64
endif
ifeq ($(ppc64le),1)
$(info WARNING - ppc64le variable has been deprecated)
$(info WARNING - please use TARGET_ARCH=ppc64le instead)
TARGET_ARCH ?= ppc64le
endif
ifneq ($(GCC),)
$(info WARNING - GCC variable has been deprecated)
$(info WARNING - please use HOST_COMPILER=$(GCC) instead)
HOST_COMPILER ?= $(GCC)
endif
ifneq ($(abi),)
$(error ERROR - abi variable has been removed)
endif
############################
# end deprecated interface #
############################
# architecture
HOST_ARCH := $(shell uname -m)
TARGET_ARCH ?= $(HOST_ARCH)
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le armv7l))
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le))
TARGET_SIZE := 64
else ifneq (,$(filter $(TARGET_ARCH),armv7l))
TARGET_SIZE := 32
endif
else
TARGET_SIZE := $(shell getconf LONG_BIT)
endif
else
$(error ERROR - unsupported value $(TARGET_ARCH) for TARGET_ARCH!)
endif
# sbsa and aarch64 systems look similar. Need to differentiate them at host level for now.
ifeq ($(HOST_ARCH),aarch64)
ifeq ($(CUDA_PATH)/targets/sbsa-linux,$(shell ls -1d $(CUDA_PATH)/targets/sbsa-linux))
HOST_ARCH := sbsa
TARGET_ARCH := sbsa
endif
endif
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq (,$(filter $(HOST_ARCH)-$(TARGET_ARCH),aarch64-armv7l x86_64-armv7l x86_64-aarch64 x86_64-sbsa x86_64-ppc64le))
$(error ERROR - cross compiling from $(HOST_ARCH) to $(TARGET_ARCH) is not supported!)
endif
endif
# When on native aarch64 system with userspace of 32-bit, change TARGET_ARCH to armv7l
ifeq ($(HOST_ARCH)-$(TARGET_ARCH)-$(TARGET_SIZE),aarch64-aarch64-32)
TARGET_ARCH = armv7l
endif
# operating system
HOST_OS := $(shell uname -s 2>/dev/null | tr "[:upper:]" "[:lower:]")
TARGET_OS ?= $(HOST_OS)
ifeq (,$(filter $(TARGET_OS),linux darwin qnx android))
$(error ERROR - unsupported value $(TARGET_OS) for TARGET_OS!)
endif
# host compiler
ifeq ($(TARGET_OS),darwin)
ifeq ($(shell expr `xcodebuild -version | grep -i xcode | awk '{print $$2}' | cut -d'.' -f1` \>= 5),1)
HOST_COMPILER ?= clang++
endif
else ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq ($(HOST_ARCH)-$(TARGET_ARCH),x86_64-armv7l)
ifeq ($(TARGET_OS),linux)
HOST_COMPILER ?= arm-linux-gnueabihf-g++
else ifeq ($(TARGET_OS),qnx)
ifeq ($(QNX_HOST),)
$(error ERROR - QNX_HOST must be passed to the QNX host toolchain)
endif
ifeq ($(QNX_TARGET),)
$(error ERROR - QNX_TARGET must be passed to the QNX target toolchain)
endif
export QNX_HOST
export QNX_TARGET
HOST_COMPILER ?= $(QNX_HOST)/usr/bin/arm-unknown-nto-qnx6.6.0eabi-g++
else ifeq ($(TARGET_OS),android)
HOST_COMPILER ?= arm-linux-androideabi-g++
endif
else ifeq ($(TARGET_ARCH),aarch64)
ifeq ($(TARGET_OS), linux)
HOST_COMPILER ?= aarch64-linux-gnu-g++
else ifeq ($(TARGET_OS),qnx)
ifeq ($(QNX_HOST),)
$(error ERROR - QNX_HOST must be passed to the QNX host toolchain)
endif
ifeq ($(QNX_TARGET),)
$(error ERROR - QNX_TARGET must be passed to the QNX target toolchain)
endif
export QNX_HOST
export QNX_TARGET
HOST_COMPILER ?= $(QNX_HOST)/usr/bin/aarch64-unknown-nto-qnx7.0.0-g++
else ifeq ($(TARGET_OS), android)
HOST_COMPILER ?= aarch64-linux-android-clang++
endif
else ifeq ($(TARGET_ARCH),sbsa)
HOST_COMPILER ?= aarch64-linux-gnu-g++
else ifeq ($(TARGET_ARCH),ppc64le)
HOST_COMPILER ?= powerpc64le-linux-gnu-g++
endif
endif
HOST_COMPILER ?= g++
NVCC := $(CUDA_PATH)/bin/nvcc -ccbin $(HOST_COMPILER)
# internal flags
NVCCFLAGS := -m${TARGET_SIZE}
CCFLAGS :=
LDFLAGS :=
# build flags
ifeq ($(TARGET_OS),darwin)
LDFLAGS += -rpath $(CUDA_PATH)/lib
CCFLAGS += -arch $(HOST_ARCH)
else ifeq ($(HOST_ARCH)-$(TARGET_ARCH)-$(TARGET_OS),x86_64-armv7l-linux)
LDFLAGS += --dynamic-linker=/lib/ld-linux-armhf.so.3
CCFLAGS += -mfloat-abi=hard
else ifeq ($(TARGET_OS),android)
LDFLAGS += -pie
CCFLAGS += -fpie -fpic -fexceptions
endif
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-linux)
ifneq ($(TARGET_FS),)
GCCVERSIONLTEQ46 := $(shell expr `$(HOST_COMPILER) -dumpversion` \<= 4.6)
ifeq ($(GCCVERSIONLTEQ46),1)
CCFLAGS += --sysroot=$(TARGET_FS)
endif
LDFLAGS += --sysroot=$(TARGET_FS)
LDFLAGS += -rpath-link=$(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/arm-linux-gnueabihf
endif
endif
ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-linux)
ifneq ($(TARGET_FS),)
GCCVERSIONLTEQ46 := $(shell expr `$(HOST_COMPILER) -dumpversion` \<= 4.6)
ifeq ($(GCCVERSIONLTEQ46),1)
CCFLAGS += --sysroot=$(TARGET_FS)
endif
LDFLAGS += --sysroot=$(TARGET_FS)
LDFLAGS += -rpath-link=$(TARGET_FS)/lib -L$(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/lib/aarch64-linux-gnu -L$(TARGET_FS)/lib/aarch64-linux-gnu
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib -L$(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/aarch64-linux-gnu -L$(TARGET_FS)/usr/lib/aarch64-linux-gnu
LDFLAGS += --unresolved-symbols=ignore-in-shared-libs
CCFLAGS += -isystem=$(TARGET_FS)/usr/include -I$(TARGET_FS)/usr/include
CCFLAGS += -isystem=$(TARGET_FS)/usr/include/aarch64-linux-gnu -I$(TARGET_FS)/usr/include/aarch64-linux-gnu
endif
endif
ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-qnx)
CCFLAGS += -DWIN_INTERFACE_CUSTOM -I/usr/include/aarch64-qnx-gnu
LDFLAGS += -lsocket
LDFLAGS += -rpath=/usr/lib/aarch64-qnx-gnu -L/usr/lib/aarch64-qnx-gnu
ifneq ($(TARGET_FS),)
LDFLAGS += -rpath=$(TARGET_FS)/usr/lib -L $(TARGET_FS)/usr/lib
LDFLAGS += -rpath=$(TARGET_FS)/usr/libnvidia -L $(TARGET_FS)/usr/libnvidia
endif
ifdef TARGET_OVERRIDE # cuda toolkit targets override
NVCCFLAGS += -target-dir $(TARGET_OVERRIDE)
endif
endif
endif
# Install directory of different arch
CUDA_INSTALL_TARGET_DIR :=
ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-linux)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-gnueabihf/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-linux)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),sbsa-linux)
CUDA_INSTALL_TARGET_DIR = targets/sbsa-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-android)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-androideabi/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-android)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-linux-androideabi/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-qnx)
CUDA_INSTALL_TARGET_DIR = targets/ARMv7-linux-QNX/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-qnx)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-qnx/
else ifeq ($(TARGET_ARCH),ppc64le)
CUDA_INSTALL_TARGET_DIR = targets/ppc64le-linux/
endif
# Debug build flags
ifeq ($(dbg),1)
NVCCFLAGS += -g -G
BUILD_TYPE := debug
else
BUILD_TYPE := release
endif
ALL_CCFLAGS :=
ALL_CCFLAGS += $(NVCCFLAGS)
ALL_CCFLAGS += $(EXTRA_NVCCFLAGS)
ALL_CCFLAGS += $(addprefix -Xcompiler ,$(CCFLAGS))
ALL_CCFLAGS += $(addprefix -Xcompiler ,$(EXTRA_CCFLAGS))
SAMPLE_ENABLED := 1
ALL_LDFLAGS :=
ALL_LDFLAGS += $(ALL_CCFLAGS)
ALL_LDFLAGS += $(addprefix -Xlinker ,$(LDFLAGS))
ALL_LDFLAGS += $(addprefix -Xlinker ,$(EXTRA_LDFLAGS))
# Common includes and paths for CUDA
INCLUDES := -I../../Common
LIBRARIES :=
################################################################################
# Gencode arguments
ifeq ($(TARGET_ARCH),$(filter $(TARGET_ARCH),armv7l aarch64))
SMS ?= 35 37 50 52 60 61 70 72 75 80
else
SMS ?= 35 37 50 52 60 61 70 75 80
endif
ifeq ($(SMS),)
$(info >>> WARNING - no SM architectures have been specified - waiving sample <<<)
SAMPLE_ENABLED := 0
endif
ifeq ($(GENCODE_FLAGS),)
# Generate SASS code for each SM architecture listed in $(SMS)
$(foreach sm,$(SMS),$(eval GENCODE_FLAGS += -gencode arch=compute_$(sm),code=sm_$(sm)))
# Generate PTX code from the highest SM architecture in $(SMS) to guarantee forward-compatibility
HIGHEST_SM := $(lastword $(sort $(SMS)))
ifneq ($(HIGHEST_SM),)
GENCODE_FLAGS += -gencode arch=compute_$(HIGHEST_SM),code=compute_$(HIGHEST_SM)
endif
endif
ifeq ($(SAMPLE_ENABLED),0)
EXEC ?= @echo "[@]"
endif
################################################################################
# Target rules
all: build
build: concurrentKernels
check.deps:
ifeq ($(SAMPLE_ENABLED),0)
@echo "Sample will be waived due to the above missing dependencies"
else
@echo "Sample is ready - all dependencies have been met"
endif
concurrentKernels.o:concurrentKernels.cu
$(EXEC) $(NVCC) $(INCLUDES) $(ALL_CCFLAGS) $(GENCODE_FLAGS) -o $@ -c $<
concurrentKernels: concurrentKernels.o
$(EXEC) $(NVCC) $(ALL_LDFLAGS) $(GENCODE_FLAGS) -o $@ $+ $(LIBRARIES)
$(EXEC) mkdir -p ../../bin/$(TARGET_ARCH)/$(TARGET_OS)/$(BUILD_TYPE)
$(EXEC) cp $@ ../../bin/$(TARGET_ARCH)/$(TARGET_OS)/$(BUILD_TYPE)
run: build
$(EXEC) ./concurrentKernels
clean:
rm -f concurrentKernels concurrentKernels.o
rm -rf ../../bin/$(TARGET_ARCH)/$(TARGET_OS)/$(BUILD_TYPE)/concurrentKernels
clobber: clean

View File

@ -0,0 +1,63 @@
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE entry SYSTEM "SamplesInfo.dtd">
<entry>
<name>concurrentKernels</name>
<description><![CDATA[This sample demonstrates the use of CUDA streams for concurrent execution of several kernels on GPU device. It also illustrates how to introduce dependencies between CUDA streams with the new cudaStreamWaitEvent function.]]></description>
<devicecompilation>whole</devicecompilation>
<includepaths>
<path>./</path>
<path>../</path>
<path>../../common/inc</path>
</includepaths>
<keyconcepts>
<concept level="advanced">Performance Strategies</concept>
</keyconcepts>
<keywords>
<keyword>CUDA</keyword>
<keyword>Concurrent Kernels</keyword>
</keywords>
<libraries>
</libraries>
<librarypaths>
</librarypaths>
<nsight_eclipse>true</nsight_eclipse>
<primary_file>concurrentKernels.cu</primary_file>
<scopes>
<scope>1:CUDA Advanced Topics</scope>
<scope>1:Performance Strategies</scope>
</scopes>
<sm-arch>sm35</sm-arch>
<sm-arch>sm37</sm-arch>
<sm-arch>sm50</sm-arch>
<sm-arch>sm52</sm-arch>
<sm-arch>sm60</sm-arch>
<sm-arch>sm61</sm-arch>
<sm-arch>sm70</sm-arch>
<sm-arch>sm72</sm-arch>
<sm-arch>sm75</sm-arch>
<sm-arch>sm80</sm-arch>
<supported_envs>
<env>
<arch>x86_64</arch>
<platform>linux</platform>
</env>
<env>
<platform>windows7</platform>
</env>
<env>
<arch>x86_64</arch>
<platform>macosx</platform>
</env>
<env>
<arch>arm</arch>
</env>
<env>
<arch>ppc64le</arch>
<platform>linux</platform>
</env>
</supported_envs>
<supported_sm_architectures>
<include>all</include>
</supported_sm_architectures>
<title>Concurrent Kernels</title>
</entry>

View File

@ -0,0 +1,67 @@
# concurrentKernels - Concurrent Kernels
## Description
This sample demonstrates the use of CUDA streams for concurrent execution of several kernels on GPU device. It also illustrates how to introduce dependencies between CUDA streams with the new cudaStreamWaitEvent function.
## Key Concepts
Performance Strategies
## Supported SM Architectures
[SM 3.5 ](https://developer.nvidia.com/cuda-gpus) [SM 3.7 ](https://developer.nvidia.com/cuda-gpus) [SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus)
## Supported OSes
Linux, Windows
## Supported CPU Architecture
x86_64, ppc64le, armv7l
## CUDA APIs involved
## Prerequisites
Download and install the [CUDA Toolkit 11.0](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
## Build and Run
### Windows
The Windows samples are built using the Visual Studio IDE. Solution files (.sln) are provided for each supported version of Visual Studio, using the format:
```
*_vs<version>.sln - for Visual Studio <version>
```
Each individual sample has its own set of solution files in its directory:
To build/examine all the samples at once, the complete solution files should be used. To build/examine a single sample, the individual sample solution files should be used.
> **Note:** Some samples require that the Microsoft DirectX SDK (June 2010 or newer) be installed and that the VC++ directory paths are properly set up (**Tools > Options...**). Check DirectX Dependencies section for details."
### Linux
The Linux samples are built using makefiles. To use the makefiles, change the current directory to the sample directory you wish to build, and run make:
```
$ cd <sample_dir>
$ make
```
The samples makefiles can take advantage of certain options:
* **TARGET_ARCH=<arch>** - cross-compile targeting a specific architecture. Allowed architectures are x86_64, ppc64le, armv7l.
By default, TARGET_ARCH is set to HOST_ARCH. On a x86_64 machine, not setting TARGET_ARCH is the equivalent of setting TARGET_ARCH=x86_64.<br/>
`$ make TARGET_ARCH=x86_64` <br/> `$ make TARGET_ARCH=ppc64le` <br/> `$ make TARGET_ARCH=armv7l` <br/>
See [here](http://docs.nvidia.com/cuda/cuda-samples/index.html#cross-samples) for more details.
* **dbg=1** - build with debug symbols
```
$ make dbg=1
```
* **SMS="A B ..."** - override the SM architectures for which the sample will be built, where `"A B ..."` is a space-delimited list of SM architectures. For example, to generate SASS for SM 50 and SM 60, use `SMS="50 60"`.
```
$ make SMS="50 60"
```
* **HOST_COMPILER=<host_compiler>** - override the default g++ host compiler. See the [Linux Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#system-requirements) for a list of supported host compilers.
```
$ make HOST_COMPILER=g++
```
## References (for more details)

View File

@ -0,0 +1,228 @@
/* Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
//
// This sample demonstrates the use of streams for concurrent execution. It also
// illustrates how to introduce dependencies between CUDA streams with the
// cudaStreamWaitEvent function.
//
// Devices of compute capability 2.0 or higher can overlap the kernels
//
#include <cooperative_groups.h>
#include <stdio.h>
namespace cg = cooperative_groups;
#include <helper_cuda.h>
#include <helper_functions.h>
// This is a kernel that does no real work but runs at least for a specified
// number of clocks
__global__ void clock_block(clock_t *d_o, clock_t clock_count) {
unsigned int start_clock = (unsigned int)clock();
clock_t clock_offset = 0;
while (clock_offset < clock_count) {
unsigned int end_clock = (unsigned int)clock();
// The code below should work like
// this (thanks to modular arithmetics):
//
// clock_offset = (clock_t) (end_clock > start_clock ?
// end_clock - start_clock :
// end_clock + (0xffffffffu - start_clock));
//
// Indeed, let m = 2^32 then
// end - start = end + m - start (mod m).
clock_offset = (clock_t)(end_clock - start_clock);
}
d_o[0] = clock_offset;
}
// Single warp reduction kernel
__global__ void sum(clock_t *d_clocks, int N) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
__shared__ clock_t s_clocks[32];
clock_t my_sum = 0;
for (int i = threadIdx.x; i < N; i += blockDim.x) {
my_sum += d_clocks[i];
}
s_clocks[threadIdx.x] = my_sum;
cg::sync(cta);
for (int i = 16; i > 0; i /= 2) {
if (threadIdx.x < i) {
s_clocks[threadIdx.x] += s_clocks[threadIdx.x + i];
}
cg::sync(cta);
}
d_clocks[0] = s_clocks[0];
}
int main(int argc, char **argv) {
int nkernels = 8; // number of concurrent kernels
int nstreams = nkernels + 1; // use one more stream than concurrent kernel
int nbytes = nkernels * sizeof(clock_t); // number of data bytes
float kernel_time = 10; // time the kernel should run in ms
float elapsed_time; // timing variables
int cuda_device = 0;
printf("[%s] - Starting...\n", argv[0]);
// get number of kernels if overridden on the command line
if (checkCmdLineFlag(argc, (const char **)argv, "nkernels")) {
nkernels = getCmdLineArgumentInt(argc, (const char **)argv, "nkernels");
nstreams = nkernels + 1;
}
// use command-line specified CUDA device, otherwise use device with highest
// Gflops/s
cuda_device = findCudaDevice(argc, (const char **)argv);
cudaDeviceProp deviceProp;
checkCudaErrors(cudaGetDevice(&cuda_device));
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, cuda_device));
if ((deviceProp.concurrentKernels == 0)) {
printf("> GPU does not support concurrent kernel execution\n");
printf(" CUDA kernel runs will be serialized\n");
}
printf("> Detected Compute SM %d.%d hardware with %d multi-processors\n",
deviceProp.major, deviceProp.minor, deviceProp.multiProcessorCount);
// allocate host memory
clock_t *a = 0; // pointer to the array data in host memory
checkCudaErrors(cudaMallocHost((void **)&a, nbytes));
// allocate device memory
clock_t *d_a = 0; // pointers to data and init value in the device memory
checkCudaErrors(cudaMalloc((void **)&d_a, nbytes));
// allocate and initialize an array of stream handles
cudaStream_t *streams =
(cudaStream_t *)malloc(nstreams * sizeof(cudaStream_t));
for (int i = 0; i < nstreams; i++) {
checkCudaErrors(cudaStreamCreate(&(streams[i])));
}
// create CUDA event handles
cudaEvent_t start_event, stop_event;
checkCudaErrors(cudaEventCreate(&start_event));
checkCudaErrors(cudaEventCreate(&stop_event));
// the events are used for synchronization only and hence do not need to
// record timings this also makes events not introduce global sync points when
// recorded which is critical to get overlap
cudaEvent_t *kernelEvent;
kernelEvent = (cudaEvent_t *)malloc(nkernels * sizeof(cudaEvent_t));
for (int i = 0; i < nkernels; i++) {
checkCudaErrors(
cudaEventCreateWithFlags(&(kernelEvent[i]), cudaEventDisableTiming));
}
//////////////////////////////////////////////////////////////////////
// time execution with nkernels streams
clock_t total_clocks = 0;
#if defined(__arm__) || defined(__aarch64__)
// the kernel takes more time than the channel reset time on arm archs, so to
// prevent hangs reduce time_clocks.
clock_t time_clocks = (clock_t)(kernel_time * (deviceProp.clockRate / 1000));
#else
clock_t time_clocks = (clock_t)(kernel_time * deviceProp.clockRate);
#endif
cudaEventRecord(start_event, 0);
// queue nkernels in separate streams and record when they are done
for (int i = 0; i < nkernels; ++i) {
clock_block<<<1, 1, 0, streams[i]>>>(&d_a[i], time_clocks);
total_clocks += time_clocks;
checkCudaErrors(cudaEventRecord(kernelEvent[i], streams[i]));
// make the last stream wait for the kernel event to be recorded
checkCudaErrors(
cudaStreamWaitEvent(streams[nstreams - 1], kernelEvent[i], 0));
}
// queue a sum kernel and a copy back to host in the last stream.
// the commands in this stream get dispatched as soon as all the kernel events
// have been recorded
sum<<<1, 32, 0, streams[nstreams - 1]>>>(d_a, nkernels);
checkCudaErrors(cudaMemcpyAsync(
a, d_a, sizeof(clock_t), cudaMemcpyDeviceToHost, streams[nstreams - 1]));
// at this point the CPU has dispatched all work for the GPU and can continue
// processing other tasks in parallel
// in this sample we just wait until the GPU is done
checkCudaErrors(cudaEventRecord(stop_event, 0));
checkCudaErrors(cudaEventSynchronize(stop_event));
checkCudaErrors(cudaEventElapsedTime(&elapsed_time, start_event, stop_event));
printf("Expected time for serial execution of %d kernels = %.3fs\n", nkernels,
nkernels * kernel_time / 1000.0f);
printf("Expected time for concurrent execution of %d kernels = %.3fs\n",
nkernels, kernel_time / 1000.0f);
printf("Measured time for sample = %.3fs\n", elapsed_time / 1000.0f);
bool bTestResult = (a[0] > total_clocks);
// release resources
for (int i = 0; i < nkernels; i++) {
cudaStreamDestroy(streams[i]);
cudaEventDestroy(kernelEvent[i]);
}
free(streams);
free(kernelEvent);
cudaEventDestroy(start_event);
cudaEventDestroy(stop_event);
cudaFreeHost(a);
cudaFree(d_a);
if (!bTestResult) {
printf("Test failed!\n");
exit(EXIT_FAILURE);
}
printf("Test passed\n");
exit(EXIT_SUCCESS);
}

View File

@ -0,0 +1,20 @@

Microsoft Visual Studio Solution File, Format Version 12.00
# Visual Studio 2012
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "concurrentKernels", "concurrentKernels_vs2012.vcxproj", "{997E0757-EA74-4A4E-A0FC-47D8C8831A15}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|x64 = Debug|x64
Release|x64 = Release|x64
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Debug|x64.ActiveCfg = Debug|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Debug|x64.Build.0 = Debug|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Release|x64.ActiveCfg = Release|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Release|x64.Build.0 = Release|x64
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
EndGlobal

View File

@ -0,0 +1,107 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<CUDAPropsPath Condition="'$(CUDAPropsPath)'==''">$(VCTargetsPath)\BuildCustomizations</CUDAPropsPath>
</PropertyGroup>
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|x64">
<Configuration>Debug</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|x64">
<Configuration>Release</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
</ItemGroup>
<PropertyGroup Label="Globals">
<ProjectGuid>{997E0757-EA74-4A4E-A0FC-47D8C8831A15}</ProjectGuid>
<RootNamespace>concurrentKernels_vs2012</RootNamespace>
<ProjectName>concurrentKernels</ProjectName>
<CudaToolkitCustomDir />
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup>
<ConfigurationType>Application</ConfigurationType>
<CharacterSet>MultiByte</CharacterSet>
<PlatformToolset>v110</PlatformToolset>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)'=='Debug'">
<UseDebugLibraries>true</UseDebugLibraries>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)'=='Release'">
<WholeProgramOptimization>true</WholeProgramOptimization>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
<Import Project="$(CUDAPropsPath)\CUDA 10.2.props" />
</ImportGroup>
<ImportGroup Label="PropertySheets">
<Import Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup>
<IntDir>$(Platform)/$(Configuration)/</IntDir>
<IncludePath>$(IncludePath)</IncludePath>
<CodeAnalysisRuleSet>AllRules.ruleset</CodeAnalysisRuleSet>
<CodeAnalysisRules />
<CodeAnalysisRuleAssemblies />
</PropertyGroup>
<PropertyGroup Condition="'$(Platform)'=='x64'">
<OutDir>../../bin/win64/$(Configuration)/</OutDir>
</PropertyGroup>
<ItemDefinitionGroup>
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<PreprocessorDefinitions>WIN32;_MBCS;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>./;$(CudaToolkitDir)/include;../../Common;</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<AdditionalDependencies>cudart_static.lib;kernel32.lib;user32.lib;gdi32.lib;winspool.lib;comdlg32.lib;advapi32.lib;shell32.lib;ole32.lib;oleaut32.lib;uuid.lib;odbc32.lib;odbccp32.lib;%(AdditionalDependencies)</AdditionalDependencies>
<AdditionalLibraryDirectories>$(CudaToolkitLibDir);</AdditionalLibraryDirectories>
<OutputFile>$(OutDir)/concurrentKernels.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>
</CudaCompile>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)'=='Debug'">
<ClCompile>
<Optimization>Disabled</Optimization>
<RuntimeLibrary>MultiThreadedDebug</RuntimeLibrary>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
<LinkTimeCodeGeneration>Default</LinkTimeCodeGeneration>
</Link>
<CudaCompile>
<Runtime>MTd</Runtime>
<TargetMachinePlatform>64</TargetMachinePlatform>
</CudaCompile>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)'=='Release'">
<ClCompile>
<Optimization>MaxSpeed</Optimization>
<RuntimeLibrary>MultiThreaded</RuntimeLibrary>
</ClCompile>
<Link>
<GenerateDebugInformation>false</GenerateDebugInformation>
<LinkTimeCodeGeneration>UseLinkTimeCodeGeneration</LinkTimeCodeGeneration>
</Link>
<CudaCompile>
<Runtime>MT</Runtime>
<TargetMachinePlatform>64</TargetMachinePlatform>
</CudaCompile>
</ItemDefinitionGroup>
<ItemGroup>
<CudaCompile Include="concurrentKernels.cu" />
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
<Import Project="$(CUDAPropsPath)\CUDA 10.2.targets" />
</ImportGroup>
</Project>

View File

@ -0,0 +1,20 @@

Microsoft Visual Studio Solution File, Format Version 13.00
# Visual Studio 2013
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "concurrentKernels", "concurrentKernels_vs2013.vcxproj", "{997E0757-EA74-4A4E-A0FC-47D8C8831A15}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|x64 = Debug|x64
Release|x64 = Release|x64
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Debug|x64.ActiveCfg = Debug|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Debug|x64.Build.0 = Debug|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Release|x64.ActiveCfg = Release|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Release|x64.Build.0 = Release|x64
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
EndGlobal

View File

@ -0,0 +1,107 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<CUDAPropsPath Condition="'$(CUDAPropsPath)'==''">$(VCTargetsPath)\BuildCustomizations</CUDAPropsPath>
</PropertyGroup>
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|x64">
<Configuration>Debug</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|x64">
<Configuration>Release</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
</ItemGroup>
<PropertyGroup Label="Globals">
<ProjectGuid>{997E0757-EA74-4A4E-A0FC-47D8C8831A15}</ProjectGuid>
<RootNamespace>concurrentKernels_vs2013</RootNamespace>
<ProjectName>concurrentKernels</ProjectName>
<CudaToolkitCustomDir />
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup>
<ConfigurationType>Application</ConfigurationType>
<CharacterSet>MultiByte</CharacterSet>
<PlatformToolset>v120</PlatformToolset>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)'=='Debug'">
<UseDebugLibraries>true</UseDebugLibraries>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)'=='Release'">
<WholeProgramOptimization>true</WholeProgramOptimization>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
<Import Project="$(CUDAPropsPath)\CUDA 10.2.props" />
</ImportGroup>
<ImportGroup Label="PropertySheets">
<Import Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup>
<IntDir>$(Platform)/$(Configuration)/</IntDir>
<IncludePath>$(IncludePath)</IncludePath>
<CodeAnalysisRuleSet>AllRules.ruleset</CodeAnalysisRuleSet>
<CodeAnalysisRules />
<CodeAnalysisRuleAssemblies />
</PropertyGroup>
<PropertyGroup Condition="'$(Platform)'=='x64'">
<OutDir>../../bin/win64/$(Configuration)/</OutDir>
</PropertyGroup>
<ItemDefinitionGroup>
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<PreprocessorDefinitions>WIN32;_MBCS;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>./;$(CudaToolkitDir)/include;../../Common;</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<AdditionalDependencies>cudart_static.lib;kernel32.lib;user32.lib;gdi32.lib;winspool.lib;comdlg32.lib;advapi32.lib;shell32.lib;ole32.lib;oleaut32.lib;uuid.lib;odbc32.lib;odbccp32.lib;%(AdditionalDependencies)</AdditionalDependencies>
<AdditionalLibraryDirectories>$(CudaToolkitLibDir);</AdditionalLibraryDirectories>
<OutputFile>$(OutDir)/concurrentKernels.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>
</CudaCompile>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)'=='Debug'">
<ClCompile>
<Optimization>Disabled</Optimization>
<RuntimeLibrary>MultiThreadedDebug</RuntimeLibrary>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
<LinkTimeCodeGeneration>Default</LinkTimeCodeGeneration>
</Link>
<CudaCompile>
<Runtime>MTd</Runtime>
<TargetMachinePlatform>64</TargetMachinePlatform>
</CudaCompile>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)'=='Release'">
<ClCompile>
<Optimization>MaxSpeed</Optimization>
<RuntimeLibrary>MultiThreaded</RuntimeLibrary>
</ClCompile>
<Link>
<GenerateDebugInformation>false</GenerateDebugInformation>
<LinkTimeCodeGeneration>UseLinkTimeCodeGeneration</LinkTimeCodeGeneration>
</Link>
<CudaCompile>
<Runtime>MT</Runtime>
<TargetMachinePlatform>64</TargetMachinePlatform>
</CudaCompile>
</ItemDefinitionGroup>
<ItemGroup>
<CudaCompile Include="concurrentKernels.cu" />
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
<Import Project="$(CUDAPropsPath)\CUDA 10.2.targets" />
</ImportGroup>
</Project>

View File

@ -0,0 +1,20 @@

Microsoft Visual Studio Solution File, Format Version 14.00
# Visual Studio 2015
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "concurrentKernels", "concurrentKernels_vs2015.vcxproj", "{997E0757-EA74-4A4E-A0FC-47D8C8831A15}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|x64 = Debug|x64
Release|x64 = Release|x64
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Debug|x64.ActiveCfg = Debug|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Debug|x64.Build.0 = Debug|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Release|x64.ActiveCfg = Release|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Release|x64.Build.0 = Release|x64
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
EndGlobal

View File

@ -0,0 +1,107 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<CUDAPropsPath Condition="'$(CUDAPropsPath)'==''">$(VCTargetsPath)\BuildCustomizations</CUDAPropsPath>
</PropertyGroup>
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|x64">
<Configuration>Debug</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|x64">
<Configuration>Release</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
</ItemGroup>
<PropertyGroup Label="Globals">
<ProjectGuid>{997E0757-EA74-4A4E-A0FC-47D8C8831A15}</ProjectGuid>
<RootNamespace>concurrentKernels_vs2015</RootNamespace>
<ProjectName>concurrentKernels</ProjectName>
<CudaToolkitCustomDir />
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup>
<ConfigurationType>Application</ConfigurationType>
<CharacterSet>MultiByte</CharacterSet>
<PlatformToolset>v140</PlatformToolset>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)'=='Debug'">
<UseDebugLibraries>true</UseDebugLibraries>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)'=='Release'">
<WholeProgramOptimization>true</WholeProgramOptimization>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
<Import Project="$(CUDAPropsPath)\CUDA 10.2.props" />
</ImportGroup>
<ImportGroup Label="PropertySheets">
<Import Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup>
<IntDir>$(Platform)/$(Configuration)/</IntDir>
<IncludePath>$(IncludePath)</IncludePath>
<CodeAnalysisRuleSet>AllRules.ruleset</CodeAnalysisRuleSet>
<CodeAnalysisRules />
<CodeAnalysisRuleAssemblies />
</PropertyGroup>
<PropertyGroup Condition="'$(Platform)'=='x64'">
<OutDir>../../bin/win64/$(Configuration)/</OutDir>
</PropertyGroup>
<ItemDefinitionGroup>
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<PreprocessorDefinitions>WIN32;_MBCS;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>./;$(CudaToolkitDir)/include;../../Common;</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<AdditionalDependencies>cudart_static.lib;kernel32.lib;user32.lib;gdi32.lib;winspool.lib;comdlg32.lib;advapi32.lib;shell32.lib;ole32.lib;oleaut32.lib;uuid.lib;odbc32.lib;odbccp32.lib;%(AdditionalDependencies)</AdditionalDependencies>
<AdditionalLibraryDirectories>$(CudaToolkitLibDir);</AdditionalLibraryDirectories>
<OutputFile>$(OutDir)/concurrentKernels.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>
</CudaCompile>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)'=='Debug'">
<ClCompile>
<Optimization>Disabled</Optimization>
<RuntimeLibrary>MultiThreadedDebug</RuntimeLibrary>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
<LinkTimeCodeGeneration>Default</LinkTimeCodeGeneration>
</Link>
<CudaCompile>
<Runtime>MTd</Runtime>
<TargetMachinePlatform>64</TargetMachinePlatform>
</CudaCompile>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)'=='Release'">
<ClCompile>
<Optimization>MaxSpeed</Optimization>
<RuntimeLibrary>MultiThreaded</RuntimeLibrary>
</ClCompile>
<Link>
<GenerateDebugInformation>false</GenerateDebugInformation>
<LinkTimeCodeGeneration>UseLinkTimeCodeGeneration</LinkTimeCodeGeneration>
</Link>
<CudaCompile>
<Runtime>MT</Runtime>
<TargetMachinePlatform>64</TargetMachinePlatform>
</CudaCompile>
</ItemDefinitionGroup>
<ItemGroup>
<CudaCompile Include="concurrentKernels.cu" />
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
<Import Project="$(CUDAPropsPath)\CUDA 10.2.targets" />
</ImportGroup>
</Project>

View File

@ -0,0 +1,20 @@

Microsoft Visual Studio Solution File, Format Version 12.00
# Visual Studio 2017
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "concurrentKernels", "concurrentKernels_vs2017.vcxproj", "{997E0757-EA74-4A4E-A0FC-47D8C8831A15}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|x64 = Debug|x64
Release|x64 = Release|x64
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Debug|x64.ActiveCfg = Debug|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Debug|x64.Build.0 = Debug|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Release|x64.ActiveCfg = Release|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Release|x64.Build.0 = Release|x64
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
EndGlobal

View File

@ -0,0 +1,112 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<CUDAPropsPath Condition="'$(CUDAPropsPath)'==''">$(VCTargetsPath)\BuildCustomizations</CUDAPropsPath>
</PropertyGroup>
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|x64">
<Configuration>Debug</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|x64">
<Configuration>Release</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
</ItemGroup>
<PropertyGroup Label="Globals">
<ProjectGuid>{997E0757-EA74-4A4E-A0FC-47D8C8831A15}</ProjectGuid>
<RootNamespace>concurrentKernels_vs2017</RootNamespace>
<ProjectName>concurrentKernels</ProjectName>
<CudaToolkitCustomDir />
</PropertyGroup>
<PropertyGroup Condition="'$(WindowsTargetPlatformVersion)'==''">
<LatestTargetPlatformVersion>$([Microsoft.Build.Utilities.ToolLocationHelper]::GetLatestSDKTargetPlatformVersion('Windows', '10.0'))</LatestTargetPlatformVersion>
<WindowsTargetPlatformVersion Condition="'$(WindowsTargetPlatformVersion)' == ''">$(LatestTargetPlatformVersion)</WindowsTargetPlatformVersion>
<TargetPlatformVersion>$(WindowsTargetPlatformVersion)</TargetPlatformVersion>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup>
<ConfigurationType>Application</ConfigurationType>
<CharacterSet>MultiByte</CharacterSet>
<PlatformToolset>v141</PlatformToolset>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)'=='Debug'">
<UseDebugLibraries>true</UseDebugLibraries>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)'=='Release'">
<WholeProgramOptimization>true</WholeProgramOptimization>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
<Import Project="$(CUDAPropsPath)\CUDA 10.2.props" />
</ImportGroup>
<ImportGroup Label="PropertySheets">
<Import Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup>
<IntDir>$(Platform)/$(Configuration)/</IntDir>
<IncludePath>$(IncludePath)</IncludePath>
<CodeAnalysisRuleSet>AllRules.ruleset</CodeAnalysisRuleSet>
<CodeAnalysisRules />
<CodeAnalysisRuleAssemblies />
</PropertyGroup>
<PropertyGroup Condition="'$(Platform)'=='x64'">
<OutDir>../../bin/win64/$(Configuration)/</OutDir>
</PropertyGroup>
<ItemDefinitionGroup>
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<PreprocessorDefinitions>WIN32;_MBCS;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>./;$(CudaToolkitDir)/include;../../Common;</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<AdditionalDependencies>cudart_static.lib;kernel32.lib;user32.lib;gdi32.lib;winspool.lib;comdlg32.lib;advapi32.lib;shell32.lib;ole32.lib;oleaut32.lib;uuid.lib;odbc32.lib;odbccp32.lib;%(AdditionalDependencies)</AdditionalDependencies>
<AdditionalLibraryDirectories>$(CudaToolkitLibDir);</AdditionalLibraryDirectories>
<OutputFile>$(OutDir)/concurrentKernels.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>
</CudaCompile>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)'=='Debug'">
<ClCompile>
<Optimization>Disabled</Optimization>
<RuntimeLibrary>MultiThreadedDebug</RuntimeLibrary>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
<LinkTimeCodeGeneration>Default</LinkTimeCodeGeneration>
</Link>
<CudaCompile>
<Runtime>MTd</Runtime>
<TargetMachinePlatform>64</TargetMachinePlatform>
</CudaCompile>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)'=='Release'">
<ClCompile>
<Optimization>MaxSpeed</Optimization>
<RuntimeLibrary>MultiThreaded</RuntimeLibrary>
</ClCompile>
<Link>
<GenerateDebugInformation>false</GenerateDebugInformation>
<LinkTimeCodeGeneration>UseLinkTimeCodeGeneration</LinkTimeCodeGeneration>
</Link>
<CudaCompile>
<Runtime>MT</Runtime>
<TargetMachinePlatform>64</TargetMachinePlatform>
</CudaCompile>
</ItemDefinitionGroup>
<ItemGroup>
<CudaCompile Include="concurrentKernels.cu" />
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
<Import Project="$(CUDAPropsPath)\CUDA 10.2.targets" />
</ImportGroup>
</Project>

View File

@ -0,0 +1,20 @@

Microsoft Visual Studio Solution File, Format Version 12.00
# Visual Studio 2019
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "concurrentKernels", "concurrentKernels_vs2019.vcxproj", "{997E0757-EA74-4A4E-A0FC-47D8C8831A15}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|x64 = Debug|x64
Release|x64 = Release|x64
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Debug|x64.ActiveCfg = Debug|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Debug|x64.Build.0 = Debug|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Release|x64.ActiveCfg = Release|x64
{997E0757-EA74-4A4E-A0FC-47D8C8831A15}.Release|x64.Build.0 = Release|x64
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
EndGlobal

View File

@ -0,0 +1,108 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>
<CUDAPropsPath Condition="'$(CUDAPropsPath)'==''">$(VCTargetsPath)\BuildCustomizations</CUDAPropsPath>
</PropertyGroup>
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|x64">
<Configuration>Debug</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|x64">
<Configuration>Release</Configuration>
<Platform>x64</Platform>
</ProjectConfiguration>
</ItemGroup>
<PropertyGroup Label="Globals">
<ProjectGuid>{997E0757-EA74-4A4E-A0FC-47D8C8831A15}</ProjectGuid>
<RootNamespace>concurrentKernels_vs2019</RootNamespace>
<ProjectName>concurrentKernels</ProjectName>
<CudaToolkitCustomDir />
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup>
<ConfigurationType>Application</ConfigurationType>
<CharacterSet>MultiByte</CharacterSet>
<PlatformToolset>v142</PlatformToolset>
<WindowsTargetPlatformVersion>10.0</WindowsTargetPlatformVersion>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)'=='Debug'">
<UseDebugLibraries>true</UseDebugLibraries>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)'=='Release'">
<WholeProgramOptimization>true</WholeProgramOptimization>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
<Import Project="$(CUDAPropsPath)\CUDA 10.2.props" />
</ImportGroup>
<ImportGroup Label="PropertySheets">
<Import Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup>
<IntDir>$(Platform)/$(Configuration)/</IntDir>
<IncludePath>$(IncludePath)</IncludePath>
<CodeAnalysisRuleSet>AllRules.ruleset</CodeAnalysisRuleSet>
<CodeAnalysisRules />
<CodeAnalysisRuleAssemblies />
</PropertyGroup>
<PropertyGroup Condition="'$(Platform)'=='x64'">
<OutDir>../../bin/win64/$(Configuration)/</OutDir>
</PropertyGroup>
<ItemDefinitionGroup>
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<PreprocessorDefinitions>WIN32;_MBCS;%(PreprocessorDefinitions)</PreprocessorDefinitions>
<AdditionalIncludeDirectories>./;$(CudaToolkitDir)/include;../../Common;</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<SubSystem>Console</SubSystem>
<AdditionalDependencies>cudart_static.lib;kernel32.lib;user32.lib;gdi32.lib;winspool.lib;comdlg32.lib;advapi32.lib;shell32.lib;ole32.lib;oleaut32.lib;uuid.lib;odbc32.lib;odbccp32.lib;%(AdditionalDependencies)</AdditionalDependencies>
<AdditionalLibraryDirectories>$(CudaToolkitLibDir);</AdditionalLibraryDirectories>
<OutputFile>$(OutDir)/concurrentKernels.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>
</CudaCompile>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)'=='Debug'">
<ClCompile>
<Optimization>Disabled</Optimization>
<RuntimeLibrary>MultiThreadedDebug</RuntimeLibrary>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
<LinkTimeCodeGeneration>Default</LinkTimeCodeGeneration>
</Link>
<CudaCompile>
<Runtime>MTd</Runtime>
<TargetMachinePlatform>64</TargetMachinePlatform>
</CudaCompile>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)'=='Release'">
<ClCompile>
<Optimization>MaxSpeed</Optimization>
<RuntimeLibrary>MultiThreaded</RuntimeLibrary>
</ClCompile>
<Link>
<GenerateDebugInformation>false</GenerateDebugInformation>
<LinkTimeCodeGeneration>UseLinkTimeCodeGeneration</LinkTimeCodeGeneration>
</Link>
<CudaCompile>
<Runtime>MT</Runtime>
<TargetMachinePlatform>64</TargetMachinePlatform>
</CudaCompile>
</ItemDefinitionGroup>
<ItemGroup>
<CudaCompile Include="concurrentKernels.cu" />
</ItemGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
<Import Project="$(CUDAPropsPath)\CUDA 10.2.targets" />
</ImportGroup>
</Project>

View File

@ -72,9 +72,9 @@ endif
# architecture
HOST_ARCH := $(shell uname -m)
TARGET_ARCH ?= $(HOST_ARCH)
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le armv7l))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le armv7l))
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le))
ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 sbsa ppc64le))
TARGET_SIZE := 64
else ifneq (,$(filter $(TARGET_ARCH),armv7l))
TARGET_SIZE := 32
@ -85,8 +85,17 @@ ifneq (,$(filter $(TARGET_ARCH),x86_64 aarch64 ppc64le armv7l))
else
$(error ERROR - unsupported value $(TARGET_ARCH) for TARGET_ARCH!)
endif
# sbsa and aarch64 systems look similar. Need to differentiate them at host level for now.
ifeq ($(HOST_ARCH),aarch64)
ifeq ($(CUDA_PATH)/targets/sbsa-linux,$(shell ls -1d $(CUDA_PATH)/targets/sbsa-linux))
HOST_ARCH := sbsa
TARGET_ARCH := sbsa
endif
endif
ifneq ($(TARGET_ARCH),$(HOST_ARCH))
ifeq (,$(filter $(HOST_ARCH)-$(TARGET_ARCH),aarch64-armv7l x86_64-armv7l x86_64-aarch64 x86_64-ppc64le))
ifeq (,$(filter $(HOST_ARCH)-$(TARGET_ARCH),aarch64-armv7l x86_64-armv7l x86_64-aarch64 x86_64-sbsa x86_64-ppc64le))
$(error ERROR - cross compiling from $(HOST_ARCH) to $(TARGET_ARCH) is not supported!)
endif
endif
@ -141,6 +150,8 @@ else ifneq ($(TARGET_ARCH),$(HOST_ARCH))
else ifeq ($(TARGET_OS), android)
HOST_COMPILER ?= aarch64-linux-android-clang++
endif
else ifeq ($(TARGET_ARCH),sbsa)
HOST_COMPILER ?= aarch64-linux-gnu-g++
else ifeq ($(TARGET_ARCH),ppc64le)
HOST_COMPILER ?= powerpc64le-linux-gnu-g++
endif
@ -185,19 +196,27 @@ ifneq ($(TARGET_ARCH),$(HOST_ARCH))
CCFLAGS += --sysroot=$(TARGET_FS)
endif
LDFLAGS += --sysroot=$(TARGET_FS)
LDFLAGS += -rpath-link=$(TARGET_FS)/lib -L $(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib -L $(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/aarch64-linux-gnu -L $(TARGET_FS)/usr/lib/aarch64-linux-gnu
LDFLAGS += -rpath-link=$(TARGET_FS)/lib -L$(TARGET_FS)/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/lib/aarch64-linux-gnu -L$(TARGET_FS)/lib/aarch64-linux-gnu
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib -L$(TARGET_FS)/usr/lib
LDFLAGS += -rpath-link=$(TARGET_FS)/usr/lib/aarch64-linux-gnu -L$(TARGET_FS)/usr/lib/aarch64-linux-gnu
LDFLAGS += --unresolved-symbols=ignore-in-shared-libs
CCFLAGS += -isystem=$(TARGET_FS)/usr/include
CCFLAGS += -isystem=$(TARGET_FS)/usr/include/aarch64-linux-gnu
CCFLAGS += -isystem=$(TARGET_FS)/usr/include -I$(TARGET_FS)/usr/include
CCFLAGS += -isystem=$(TARGET_FS)/usr/include/aarch64-linux-gnu -I$(TARGET_FS)/usr/include/aarch64-linux-gnu
endif
endif
endif
ifeq ($(TARGET_OS),qnx)
CCFLAGS += -DWIN_INTERFACE_CUSTOM
ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-qnx)
CCFLAGS += -DWIN_INTERFACE_CUSTOM -I/usr/include/aarch64-qnx-gnu
LDFLAGS += -lsocket
LDFLAGS += -rpath=/usr/lib/aarch64-qnx-gnu -L/usr/lib/aarch64-qnx-gnu
ifneq ($(TARGET_FS),)
LDFLAGS += -rpath=$(TARGET_FS)/usr/lib -L $(TARGET_FS)/usr/lib
LDFLAGS += -rpath=$(TARGET_FS)/usr/libnvidia -L $(TARGET_FS)/usr/libnvidia
endif
ifdef TARGET_OVERRIDE # cuda toolkit targets override
NVCCFLAGS += -target-dir $(TARGET_OVERRIDE)
endif
endif
endif
# Install directory of different arch
@ -206,6 +225,8 @@ ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-linux)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-gnueabihf/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-linux)
CUDA_INSTALL_TARGET_DIR = targets/aarch64-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),sbsa-linux)
CUDA_INSTALL_TARGET_DIR = targets/sbsa-linux/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),armv7l-android)
CUDA_INSTALL_TARGET_DIR = targets/armv7-linux-androideabi/
else ifeq ($(TARGET_ARCH)-$(TARGET_OS),aarch64-android)
@ -247,9 +268,9 @@ LIBRARIES :=
# Gencode arguments
ifeq ($(TARGET_ARCH),$(filter $(TARGET_ARCH),armv7l aarch64))
SMS ?= 30 35 37 50 52 60 61 70 72 75
SMS ?= 35 37 50 52 60 61 70 72 75 80
else
SMS ?= 30 35 37 50 52 60 61 70 75
SMS ?= 35 37 50 52 60 61 70 75 80
endif
ifeq ($(SMS),)

View File

@ -48,7 +48,6 @@
<scope>3:Linear Algebra</scope>
<scope>1:CUDA Graphs</scope>
</scopes>
<sm-arch>sm30</sm-arch>
<sm-arch>sm35</sm-arch>
<sm-arch>sm37</sm-arch>
<sm-arch>sm50</sm-arch>
@ -58,6 +57,7 @@
<sm-arch>sm70</sm-arch>
<sm-arch>sm72</sm-arch>
<sm-arch>sm75</sm-arch>
<sm-arch>sm80</sm-arch>
<supported_envs>
<env>
<arch>x86_64</arch>

View File

@ -10,11 +10,11 @@ Linear Algebra, CUBLAS Library, CUSPARSE Library
## Supported SM Architectures
[SM 3.0 ](https://developer.nvidia.com/cuda-gpus) [SM 3.5 ](https://developer.nvidia.com/cuda-gpus) [SM 3.7 ](https://developer.nvidia.com/cuda-gpus) [SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus)
[SM 3.5 ](https://developer.nvidia.com/cuda-gpus) [SM 3.7 ](https://developer.nvidia.com/cuda-gpus) [SM 5.0 ](https://developer.nvidia.com/cuda-gpus) [SM 5.2 ](https://developer.nvidia.com/cuda-gpus) [SM 6.0 ](https://developer.nvidia.com/cuda-gpus) [SM 6.1 ](https://developer.nvidia.com/cuda-gpus) [SM 7.0 ](https://developer.nvidia.com/cuda-gpus) [SM 7.2 ](https://developer.nvidia.com/cuda-gpus) [SM 7.5 ](https://developer.nvidia.com/cuda-gpus) [SM 8.0 ](https://developer.nvidia.com/cuda-gpus)
## Supported OSes
Linux, Windows, MacOSX
Linux, Windows
## Supported CPU Architecture
@ -30,7 +30,7 @@ cudaStreamBeginCapture, cudaStreamEndCapture, cudaGraphCreate, cudaGraphLaunch,
## Prerequisites
Download and install the [CUDA Toolkit 10.2](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
Download and install the [CUDA Toolkit 11.0](https://developer.nvidia.com/cuda-downloads) for your corresponding platform.
Make sure the dependencies mentioned in [Dependencies]() section above are installed.
## Build and Run
@ -70,29 +70,5 @@ The samples makefiles can take advantage of certain options:
$ make HOST_COMPILER=g++
```
### Mac
The Mac samples are built using makefiles. To use the makefiles, change directory into the sample directory you wish to build, and run make:
```
$ cd <sample_dir>
$ make
```
The samples makefiles can take advantage of certain options:
* **dbg=1** - build with debug symbols
```
$ make dbg=1
```
* **SMS="A B ..."** - override the SM architectures for which the sample will be built, where "A B ..." is a space-delimited list of SM architectures. For example, to generate SASS for SM 50 and SM 60, use SMS="50 60".
```
$ make SMS="A B ..."
```
* **HOST_COMPILER=<host_compiler>** - override the default clang host compiler. See the [Mac Installation Guide](http://docs.nvidia.com/cuda/cuda-installation-guide-mac-os-x/index.html#system-requirements) for a list of supported host compilers.
```
$ make HOST_COMPILER=clang
```
## References (for more details)

View File

@ -42,13 +42,10 @@
#include <cuda_runtime.h>
#include <cusparse.h>
#include <cooperative_groups.h>
// Utilities and system includes
#include <helper_cuda.h> // helper function CUDA error checking and initialization
#include <helper_functions.h> // helper for shared functions common to CUDA Samples
namespace cg = cooperative_groups;
const char *sSDKname = "conjugateGradientCudaGraphs";
@ -193,6 +190,26 @@ int main(int argc, char **argv) {
checkCudaErrors(cudaMalloc((void **)&d_na, sizeof(float)));
checkCudaErrors(cudaMalloc((void **)&d_b, sizeof(float)));
/* Wrap raw data into cuSPARSE generic API objects */
cusparseSpMatDescr_t matA = NULL;
checkCudaErrors(cusparseCreateCsr(
&matA, N, N, nz, d_row, d_col, d_val, CUSPARSE_INDEX_32I,
CUSPARSE_INDEX_32I, CUSPARSE_INDEX_BASE_ZERO, CUDA_R_32F));
cusparseDnVecDescr_t vecx = NULL;
checkCudaErrors(cusparseCreateDnVec(&vecx, N, d_x, CUDA_R_32F));
cusparseDnVecDescr_t vecp = NULL;
checkCudaErrors(cusparseCreateDnVec(&vecp, N, d_p, CUDA_R_32F));
cusparseDnVecDescr_t vecAx = NULL;
checkCudaErrors(cusparseCreateDnVec(&vecAx, N, d_Ax, CUDA_R_32F));
/* Allocate workspace for cuSPARSE */
size_t bufferSize = 0;
checkCudaErrors(cusparseSpMV_bufferSize(
cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matA, vecx,
&beta, vecAx, CUDA_R_32F, CUSPARSE_MV_ALG_DEFAULT, &bufferSize));
void *buffer = NULL;
checkCudaErrors(cudaMalloc(&buffer, bufferSize));
cusparseMatDescr_t descr = 0;
checkCudaErrors(cusparseCreateMatDescr(&descr));
@ -217,9 +234,9 @@ int main(int argc, char **argv) {
beta = 0.0;
checkCudaErrors(cusparseSetStream(cusparseHandle, stream1));
checkCudaErrors(
cusparseScsrmv(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz,
&alpha, descr, d_val, d_row, d_col, d_x, &beta, d_Ax));
checkCudaErrors(cusparseSpMV(
cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matA, vecx,
&beta, vecAx, CUDA_R_32F, CUSPARSE_MV_ALG_DEFAULT, &buffer));
checkCudaErrors(cublasSetStream(cublasHandle, stream1));
checkCudaErrors(cublasSaxpy(cublasHandle, N, &alpham1, d_Ax, 1, d_r, 1));
@ -231,9 +248,9 @@ int main(int argc, char **argv) {
k = 1;
// First Iteration when k=1 starts
checkCudaErrors(cublasScopy(cublasHandle, N, d_r, 1, d_p, 1));
checkCudaErrors(
cusparseScsrmv(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz,
&alpha, descr, d_val, d_row, d_col, d_p, &beta, d_Ax));
checkCudaErrors(cusparseSpMV(
cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matA, vecp,
&beta, vecAx, CUDA_R_32F, CUSPARSE_MV_ALG_DEFAULT, &buffer));
checkCudaErrors(cublasSdot(cublasHandle, N, d_p, 1, d_Ax, 1, d_dot));
@ -273,9 +290,9 @@ int main(int argc, char **argv) {
checkCudaErrors(
cusparseSetPointerMode(cusparseHandle, CUSPARSE_POINTER_MODE_HOST));
checkCudaErrors(
cusparseScsrmv(cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz,
&alpha, descr, d_val, d_row, d_col, d_p, &beta, d_Ax));
checkCudaErrors(cusparseSpMV(
cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matA, vecp,
&beta, vecAx, CUDA_R_32F, CUSPARSE_MV_ALG_DEFAULT, &buffer));
checkCudaErrors(cudaMemsetAsync(d_dot, 0, sizeof(float), stream1));
checkCudaErrors(cublasSdot(cublasHandle, N, d_p, 1, d_Ax, 1, d_dot));
@ -317,9 +334,9 @@ int main(int argc, char **argv) {
cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_HOST);
checkCudaErrors(cublasSaxpy(cublasHandle, N, &alpha, d_r, 1, d_p, 1));
checkCudaErrors(cusparseScsrmv(
cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, N, N, nz, &alpha,
descr, d_val, d_row, d_col, d_p, &beta, d_Ax));
checkCudaErrors(cusparseSpMV(
cusparseHandle, CUSPARSE_OPERATION_NON_TRANSPOSE, &alpha, matA, vecp,
&beta, vecAx, CUDA_R_32F, CUSPARSE_MV_ALG_DEFAULT, &buffer));
cublasSetPointerMode(cublasHandle, CUBLAS_POINTER_MODE_DEVICE);
checkCudaErrors(cublasSdot(cublasHandle, N, d_p, 1, d_Ax, 1, d_dot));
@ -378,6 +395,11 @@ int main(int argc, char **argv) {
cusparseDestroy(cusparseHandle);
cublasDestroy(cublasHandle);
if (matA ) { checkCudaErrors(cusparseDestroySpMat(matA)); }
if (vecx ) { checkCudaErrors(cusparseDestroyDnVec(vecx)); }
if (vecAx ) { checkCudaErrors(cusparseDestroyDnVec(vecAx)); }
if (vecp ) { checkCudaErrors(cusparseDestroyDnVec(vecp)); }
free(I);
free(J);
free(val);

View File

@ -62,7 +62,7 @@
<OutputFile>$(OutDir)/conjugateGradientCudaGraphs.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,sm_30;compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;</CodeGeneration>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

View File

@ -62,7 +62,7 @@
<OutputFile>$(OutDir)/conjugateGradientCudaGraphs.exe</OutputFile>
</Link>
<CudaCompile>
<CodeGeneration>compute_30,sm_30;compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;</CodeGeneration>
<CodeGeneration>compute_35,sm_35;compute_37,sm_37;compute_50,sm_50;compute_52,sm_52;compute_60,sm_60;compute_61,sm_61;compute_70,sm_70;compute_75,sm_75;compute_80,sm_80;</CodeGeneration>
<AdditionalOptions>-Xcompiler "/wd 4819" %(AdditionalOptions)</AdditionalOptions>
<Include>./;../../Common</Include>
<Defines>WIN32</Defines>

Some files were not shown because too many files have changed in this diff Show More