mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-12-01 15:39:14 +08:00
439 lines
11 KiB
C
439 lines
11 KiB
C
|
/*
|
||
|
* Copyright 1993-2015 NVIDIA Corporation. All rights reserved.
|
||
|
*
|
||
|
* Please refer to the NVIDIA end user license agreement (EULA) associated
|
||
|
* with this source code for terms and conditions that govern your use of
|
||
|
* this software. Any use, reproduction, disclosure, or distribution of
|
||
|
* this software and related documentation outside the terms of the EULA
|
||
|
* is strictly prohibited.
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
//
|
||
|
// Template math library for common 3D functionality
|
||
|
//
|
||
|
// nvQuaterion.h - quaternion template and utility functions
|
||
|
//
|
||
|
// This code is in part deriver from glh, a cross platform glut helper library.
|
||
|
// The copyright for glh follows this notice.
|
||
|
//
|
||
|
// Copyright (c) NVIDIA Corporation. All rights reserved.
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
/*
|
||
|
Copyright (c) 2000 Cass Everitt
|
||
|
Copyright (c) 2000 NVIDIA Corporation
|
||
|
All rights reserved.
|
||
|
|
||
|
Redistribution and use in source and binary forms, with or
|
||
|
without modification, are permitted provided that the following
|
||
|
conditions are met:
|
||
|
|
||
|
* Redistributions of source code must retain the above
|
||
|
copyright notice, this list of conditions and the following
|
||
|
disclaimer.
|
||
|
|
||
|
* Redistributions in binary form must reproduce the above
|
||
|
copyright notice, this list of conditions and the following
|
||
|
disclaimer in the documentation and/or other materials
|
||
|
provided with the distribution.
|
||
|
|
||
|
* The names of contributors to this software may not be used
|
||
|
to endorse or promote products derived from this software
|
||
|
without specific prior written permission.
|
||
|
|
||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||
|
``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
||
|
REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
||
|
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
|
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||
|
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
||
|
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
|
||
|
Cass Everitt - cass@r3.nu
|
||
|
*/
|
||
|
#ifndef NV_QUATERNION_H
|
||
|
#define NV_QUATERNION_H
|
||
|
|
||
|
namespace nv {
|
||
|
|
||
|
template <class T>
|
||
|
class vec2;
|
||
|
template <class T>
|
||
|
class vec3;
|
||
|
template <class T>
|
||
|
class vec4;
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
//
|
||
|
// Quaternion
|
||
|
//
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
|
||
|
template <class T>
|
||
|
class quaternion {
|
||
|
public:
|
||
|
quaternion() : x(0.0), y(0.0), z(0.0), w(0.0) {}
|
||
|
|
||
|
quaternion(const T v[4]) { set_value(v); }
|
||
|
|
||
|
quaternion(T q0, T q1, T q2, T q3) { set_value(q0, q1, q2, q3); }
|
||
|
|
||
|
quaternion(const matrix4<T> &m) { set_value(m); }
|
||
|
|
||
|
quaternion(const vec3<T> &axis, T radians) { set_value(axis, radians); }
|
||
|
|
||
|
quaternion(const vec3<T> &rotateFrom, const vec3<T> &rotateTo) {
|
||
|
set_value(rotateFrom, rotateTo);
|
||
|
}
|
||
|
|
||
|
quaternion(const vec3<T> &from_look, const vec3<T> &from_up,
|
||
|
const vec3<T> &to_look, const vec3<T> &to_up) {
|
||
|
set_value(from_look, from_up, to_look, to_up);
|
||
|
}
|
||
|
|
||
|
const T *get_value() const { return &_array[0]; }
|
||
|
|
||
|
void get_value(T &q0, T &q1, T &q2, T &q3) const {
|
||
|
q0 = _array[0];
|
||
|
q1 = _array[1];
|
||
|
q2 = _array[2];
|
||
|
q3 = _array[3];
|
||
|
}
|
||
|
|
||
|
quaternion &set_value(T q0, T q1, T q2, T q3) {
|
||
|
_array[0] = q0;
|
||
|
_array[1] = q1;
|
||
|
_array[2] = q2;
|
||
|
_array[3] = q3;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
void get_value(vec3<T> &axis, T &radians) const {
|
||
|
radians = T(acos(_array[3]) * T(2.0));
|
||
|
|
||
|
if (radians == T(0.0)) {
|
||
|
axis = vec3<T>(0.0, 0.0, 1.0);
|
||
|
} else {
|
||
|
axis[0] = _array[0];
|
||
|
axis[1] = _array[1];
|
||
|
axis[2] = _array[2];
|
||
|
axis = normalize(axis);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void get_value(matrix4<T> &m) const {
|
||
|
T s, xs, ys, zs, wx, wy, wz, xx, xy, xz, yy, yz, zz;
|
||
|
|
||
|
T norm = _array[0] * _array[0] + _array[1] * _array[1] +
|
||
|
_array[2] * _array[2] + _array[3] * _array[3];
|
||
|
|
||
|
s = (norm == T(0.0)) ? T(0.0) : (T(2.0) / norm);
|
||
|
|
||
|
xs = _array[0] * s;
|
||
|
ys = _array[1] * s;
|
||
|
zs = _array[2] * s;
|
||
|
|
||
|
wx = _array[3] * xs;
|
||
|
wy = _array[3] * ys;
|
||
|
wz = _array[3] * zs;
|
||
|
|
||
|
xx = _array[0] * xs;
|
||
|
xy = _array[0] * ys;
|
||
|
xz = _array[0] * zs;
|
||
|
|
||
|
yy = _array[1] * ys;
|
||
|
yz = _array[1] * zs;
|
||
|
zz = _array[2] * zs;
|
||
|
|
||
|
m(0, 0) = T(T(1.0) - (yy + zz));
|
||
|
m(1, 0) = T(xy + wz);
|
||
|
m(2, 0) = T(xz - wy);
|
||
|
|
||
|
m(0, 1) = T(xy - wz);
|
||
|
m(1, 1) = T(T(1.0) - (xx + zz));
|
||
|
m(2, 1) = T(yz + wx);
|
||
|
|
||
|
m(0, 2) = T(xz + wy);
|
||
|
m(1, 2) = T(yz - wx);
|
||
|
m(2, 2) = T(T(1.0) - (xx + yy));
|
||
|
|
||
|
m(3, 0) = m(3, 1) = m(3, 2) = m(0, 3) = m(1, 3) = m(2, 3) = T(0.0);
|
||
|
m(3, 3) = T(1.0);
|
||
|
}
|
||
|
|
||
|
quaternion &set_value(const T *qp) {
|
||
|
for (int i = 0; i < 4; i++) {
|
||
|
_array[i] = qp[i];
|
||
|
}
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
quaternion &set_value(const matrix4<T> &m) {
|
||
|
T tr, s;
|
||
|
int i, j, k;
|
||
|
const int nxt[3] = {1, 2, 0};
|
||
|
|
||
|
tr = m(0, 0) + m(1, 1) + m(2, 2);
|
||
|
|
||
|
if (tr > T(0)) {
|
||
|
s = T(sqrt(tr + m(3, 3)));
|
||
|
_array[3] = T(s * 0.5);
|
||
|
s = T(0.5) / s;
|
||
|
|
||
|
_array[0] = T((m(1, 2) - m(2, 1)) * s);
|
||
|
_array[1] = T((m(2, 0) - m(0, 2)) * s);
|
||
|
_array[2] = T((m(0, 1) - m(1, 0)) * s);
|
||
|
} else {
|
||
|
i = 0;
|
||
|
|
||
|
if (m(1, 1) > m(0, 0)) {
|
||
|
i = 1;
|
||
|
}
|
||
|
|
||
|
if (m(2, 2) > m(i, i)) {
|
||
|
i = 2;
|
||
|
}
|
||
|
|
||
|
j = nxt[i];
|
||
|
k = nxt[j];
|
||
|
|
||
|
s = T(sqrt((m(i, j) - (m(j, j) + m(k, k))) + T(1.0)));
|
||
|
|
||
|
_array[i] = T(s * 0.5);
|
||
|
s = T(0.5 / s);
|
||
|
|
||
|
_array[3] = T((m(j, k) - m(k, j)) * s);
|
||
|
_array[j] = T((m(i, j) + m(j, i)) * s);
|
||
|
_array[k] = T((m(i, k) + m(k, i)) * s);
|
||
|
}
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
quaternion &set_value(const vec3<T> &axis, T theta) {
|
||
|
T sqnorm = square_norm(axis);
|
||
|
|
||
|
if (sqnorm == T(0.0)) {
|
||
|
// axis too small.
|
||
|
x = y = z = T(0.0);
|
||
|
w = T(1.0);
|
||
|
} else {
|
||
|
theta *= T(0.5);
|
||
|
T sin_theta = T(sin(theta));
|
||
|
|
||
|
if (sqnorm != T(1)) {
|
||
|
sin_theta /= T(sqrt(sqnorm));
|
||
|
}
|
||
|
|
||
|
x = sin_theta * axis[0];
|
||
|
y = sin_theta * axis[1];
|
||
|
z = sin_theta * axis[2];
|
||
|
w = T(cos(theta));
|
||
|
}
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
quaternion &set_value(const vec3<T> &rotateFrom, const vec3<T> &rotateTo) {
|
||
|
vec3<T> p1, p2;
|
||
|
T alpha;
|
||
|
|
||
|
p1 = normalize(rotateFrom);
|
||
|
p2 = normalize(rotateTo);
|
||
|
|
||
|
alpha = dot(p1, p2);
|
||
|
|
||
|
if (alpha == T(1.0)) {
|
||
|
*this = quaternion();
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
// ensures that the anti-parallel case leads to a positive dot
|
||
|
if (alpha == T(-1.0)) {
|
||
|
vec3<T> v;
|
||
|
|
||
|
if (p1[0] != p1[1] || p1[0] != p1[2]) {
|
||
|
v = vec3<T>(p1[1], p1[2], p1[0]);
|
||
|
} else {
|
||
|
v = vec3<T>(-p1[0], p1[1], p1[2]);
|
||
|
}
|
||
|
|
||
|
v -= p1 * dot(p1, v);
|
||
|
v = normalize(v);
|
||
|
|
||
|
set_value(v, T(3.1415926));
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
p1 = normalize(cross(p1, p2));
|
||
|
|
||
|
set_value(p1, T(acos(alpha)));
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
quaternion &set_value(const vec3<T> &from_look, const vec3<T> &from_up,
|
||
|
const vec3<T> &to_look, const vec3<T> &to_up) {
|
||
|
quaternion r_look = quaternion(from_look, to_look);
|
||
|
|
||
|
vec3<T> rotated_from_up(from_up);
|
||
|
r_look.mult_vec(rotated_from_up);
|
||
|
|
||
|
quaternion r_twist = quaternion(rotated_from_up, to_up);
|
||
|
|
||
|
*this = r_twist;
|
||
|
*this *= r_look;
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
quaternion &operator*=(const quaternion<T> &qr) {
|
||
|
quaternion ql(*this);
|
||
|
|
||
|
w = ql.w * qr.w - ql.x * qr.x - ql.y * qr.y - ql.z * qr.z;
|
||
|
x = ql.w * qr.x + ql.x * qr.w + ql.y * qr.z - ql.z * qr.y;
|
||
|
y = ql.w * qr.y + ql.y * qr.w + ql.z * qr.x - ql.x * qr.z;
|
||
|
z = ql.w * qr.z + ql.z * qr.w + ql.x * qr.y - ql.y * qr.x;
|
||
|
|
||
|
return *this;
|
||
|
}
|
||
|
|
||
|
friend quaternion normalize(const quaternion<T> &q) {
|
||
|
quaternion r(q);
|
||
|
T rnorm = T(1.0) / T(sqrt(q.w * q.w + q.x * q.x + q.y * q.y + q.z * q.z));
|
||
|
|
||
|
r.x *= rnorm;
|
||
|
r.y *= rnorm;
|
||
|
r.z *= rnorm;
|
||
|
r.w *= rnorm;
|
||
|
}
|
||
|
|
||
|
friend quaternion<T> conjugate(const quaternion<T> &q) {
|
||
|
quaternion<T> r(q);
|
||
|
r._array[0] *= T(-1.0);
|
||
|
r._array[1] *= T(-1.0);
|
||
|
r._array[2] *= T(-1.0);
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
friend quaternion<T> inverse(const quaternion<T> &q) { return conjugate(q); }
|
||
|
|
||
|
//
|
||
|
// Quaternion multiplication with cartesian vector
|
||
|
// v' = q*v*q(star)
|
||
|
//
|
||
|
void mult_vec(const vec3<T> &src, vec3<T> &dst) const {
|
||
|
T v_coef = w * w - x * x - y * y - z * z;
|
||
|
T u_coef = T(2.0) * (src[0] * x + src[1] * y + src[2] * z);
|
||
|
T c_coef = T(2.0) * w;
|
||
|
|
||
|
dst.v[0] =
|
||
|
v_coef * src.v[0] + u_coef * x + c_coef * (y * src.v[2] - z * src.v[1]);
|
||
|
dst.v[1] =
|
||
|
v_coef * src.v[1] + u_coef * y + c_coef * (z * src.v[0] - x * src.v[2]);
|
||
|
dst.v[2] =
|
||
|
v_coef * src.v[2] + u_coef * z + c_coef * (x * src.v[1] - y * src.v[0]);
|
||
|
}
|
||
|
|
||
|
void mult_vec(vec3<T> &src_and_dst) const {
|
||
|
mult_vec(vec3<T>(src_and_dst), src_and_dst);
|
||
|
}
|
||
|
|
||
|
void scale_angle(T scaleFactor) {
|
||
|
vec3<T> axis;
|
||
|
T radians;
|
||
|
|
||
|
get_value(axis, radians);
|
||
|
radians *= scaleFactor;
|
||
|
set_value(axis, radians);
|
||
|
}
|
||
|
|
||
|
friend quaternion<T> slerp(const quaternion<T> &p, const quaternion<T> &q,
|
||
|
T alpha) {
|
||
|
quaternion r;
|
||
|
|
||
|
T cos_omega = p.x * q.x + p.y * q.y + p.z * q.z + p.w * q.w;
|
||
|
// if B is on opposite hemisphere from A, use -B instead
|
||
|
|
||
|
int bflip;
|
||
|
|
||
|
if ((bflip = (cos_omega < T(0)))) {
|
||
|
cos_omega = -cos_omega;
|
||
|
}
|
||
|
|
||
|
// complementary interpolation parameter
|
||
|
T beta = T(1) - alpha;
|
||
|
|
||
|
if (cos_omega >= T(1)) {
|
||
|
return p;
|
||
|
}
|
||
|
|
||
|
T omega = T(acos(cos_omega));
|
||
|
T one_over_sin_omega = T(1.0) / T(sin(omega));
|
||
|
|
||
|
beta = T(sin(omega * beta) * one_over_sin_omega);
|
||
|
alpha = T(sin(omega * alpha) * one_over_sin_omega);
|
||
|
|
||
|
if (bflip) {
|
||
|
alpha = -alpha;
|
||
|
}
|
||
|
|
||
|
r.x = beta * p._array[0] + alpha * q._array[0];
|
||
|
r.y = beta * p._array[1] + alpha * q._array[1];
|
||
|
r.z = beta * p._array[2] + alpha * q._array[2];
|
||
|
r.w = beta * p._array[3] + alpha * q._array[3];
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
T &operator[](int i) { return _array[i]; }
|
||
|
|
||
|
const T &operator[](int i) const { return _array[i]; }
|
||
|
|
||
|
friend bool operator==(const quaternion<T> &lhs, const quaternion<T> &rhs) {
|
||
|
bool r = true;
|
||
|
|
||
|
for (int i = 0; i < 4; i++) {
|
||
|
r &= lhs._array[i] == rhs._array[i];
|
||
|
}
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
friend bool operator!=(const quaternion<T> &lhs, const quaternion<T> &rhs) {
|
||
|
bool r = true;
|
||
|
|
||
|
for (int i = 0; i < 4; i++) {
|
||
|
r &= lhs._array[i] == rhs._array[i];
|
||
|
}
|
||
|
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
friend quaternion<T> operator*(const quaternion<T> &lhs,
|
||
|
const quaternion<T> &rhs) {
|
||
|
quaternion r(lhs);
|
||
|
r *= rhs;
|
||
|
return r;
|
||
|
}
|
||
|
|
||
|
union {
|
||
|
struct {
|
||
|
T x;
|
||
|
T y;
|
||
|
T z;
|
||
|
T w;
|
||
|
};
|
||
|
T _array[4];
|
||
|
};
|
||
|
};
|
||
|
};
|
||
|
|
||
|
#endif
|