mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2025-01-20 01:05:50 +08:00
193 lines
6.7 KiB
C++
193 lines
6.7 KiB
C++
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
#include <cuda_runtime.h>
|
||
|
#include <helper_cuda.h>
|
||
|
#include <helper_functions.h>
|
||
|
|
||
|
#include "scan_common.h"
|
||
|
|
||
|
int main(int argc, char **argv) {
|
||
|
printf("%s Starting...\n\n", argv[0]);
|
||
|
|
||
|
// Use command-line specified CUDA device, otherwise use device with highest
|
||
|
// Gflops/s
|
||
|
findCudaDevice(argc, (const char **)argv);
|
||
|
|
||
|
uint *d_Input, *d_Output;
|
||
|
uint *h_Input, *h_OutputCPU, *h_OutputGPU;
|
||
|
StopWatchInterface *hTimer = NULL;
|
||
|
const uint N = 13 * 1048576 / 2;
|
||
|
|
||
|
printf("Allocating and initializing host arrays...\n");
|
||
|
sdkCreateTimer(&hTimer);
|
||
|
h_Input = (uint *)malloc(N * sizeof(uint));
|
||
|
h_OutputCPU = (uint *)malloc(N * sizeof(uint));
|
||
|
h_OutputGPU = (uint *)malloc(N * sizeof(uint));
|
||
|
srand(2009);
|
||
|
|
||
|
for (uint i = 0; i < N; i++) {
|
||
|
h_Input[i] = rand();
|
||
|
}
|
||
|
|
||
|
printf("Allocating and initializing CUDA arrays...\n");
|
||
|
checkCudaErrors(cudaMalloc((void **)&d_Input, N * sizeof(uint)));
|
||
|
checkCudaErrors(cudaMalloc((void **)&d_Output, N * sizeof(uint)));
|
||
|
checkCudaErrors(
|
||
|
cudaMemcpy(d_Input, h_Input, N * sizeof(uint), cudaMemcpyHostToDevice));
|
||
|
|
||
|
printf("Initializing CUDA-C scan...\n\n");
|
||
|
initScan();
|
||
|
|
||
|
int globalFlag = 1;
|
||
|
size_t szWorkgroup;
|
||
|
const int iCycles = 100;
|
||
|
printf(
|
||
|
"*** Running GPU scan for short arrays (%d identical iterations)...\n\n",
|
||
|
iCycles);
|
||
|
|
||
|
for (uint arrayLength = MIN_SHORT_ARRAY_SIZE;
|
||
|
arrayLength <= MAX_SHORT_ARRAY_SIZE; arrayLength <<= 1) {
|
||
|
printf("Running scan for %u elements (%u arrays)...\n", arrayLength,
|
||
|
N / arrayLength);
|
||
|
checkCudaErrors(cudaDeviceSynchronize());
|
||
|
sdkResetTimer(&hTimer);
|
||
|
sdkStartTimer(&hTimer);
|
||
|
|
||
|
for (int i = 0; i < iCycles; i++) {
|
||
|
szWorkgroup =
|
||
|
scanExclusiveShort(d_Output, d_Input, N / arrayLength, arrayLength);
|
||
|
}
|
||
|
|
||
|
checkCudaErrors(cudaDeviceSynchronize());
|
||
|
sdkStopTimer(&hTimer);
|
||
|
double timerValue = 1.0e-3 * sdkGetTimerValue(&hTimer) / iCycles;
|
||
|
|
||
|
printf("Validating the results...\n");
|
||
|
printf("...reading back GPU results\n");
|
||
|
checkCudaErrors(cudaMemcpy(h_OutputGPU, d_Output, N * sizeof(uint),
|
||
|
cudaMemcpyDeviceToHost));
|
||
|
|
||
|
printf(" ...scanExclusiveHost()\n");
|
||
|
scanExclusiveHost(h_OutputCPU, h_Input, N / arrayLength, arrayLength);
|
||
|
|
||
|
// Compare GPU results with CPU results and accumulate error for this test
|
||
|
printf(" ...comparing the results\n");
|
||
|
int localFlag = 1;
|
||
|
|
||
|
for (uint i = 0; i < N; i++) {
|
||
|
if (h_OutputCPU[i] != h_OutputGPU[i]) {
|
||
|
localFlag = 0;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Log message on individual test result, then accumulate to global flag
|
||
|
printf(" ...Results %s\n\n",
|
||
|
(localFlag == 1) ? "Match" : "DON'T Match !!!");
|
||
|
globalFlag = globalFlag && localFlag;
|
||
|
|
||
|
// Data log
|
||
|
if (arrayLength == MAX_SHORT_ARRAY_SIZE) {
|
||
|
printf("\n");
|
||
|
printf(
|
||
|
"scan, Throughput = %.4f MElements/s, Time = %.5f s, Size = %u "
|
||
|
"Elements, NumDevsUsed = %u, Workgroup = %u\n",
|
||
|
(1.0e-6 * (double)arrayLength / timerValue), timerValue,
|
||
|
(unsigned int)arrayLength, 1, (unsigned int)szWorkgroup);
|
||
|
printf("\n");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
printf(
|
||
|
"***Running GPU scan for large arrays (%u identical iterations)...\n\n",
|
||
|
iCycles);
|
||
|
|
||
|
for (uint arrayLength = MIN_LARGE_ARRAY_SIZE;
|
||
|
arrayLength <= MAX_LARGE_ARRAY_SIZE; arrayLength <<= 1) {
|
||
|
printf("Running scan for %u elements (%u arrays)...\n", arrayLength,
|
||
|
N / arrayLength);
|
||
|
checkCudaErrors(cudaDeviceSynchronize());
|
||
|
sdkResetTimer(&hTimer);
|
||
|
sdkStartTimer(&hTimer);
|
||
|
|
||
|
for (int i = 0; i < iCycles; i++) {
|
||
|
szWorkgroup =
|
||
|
scanExclusiveLarge(d_Output, d_Input, N / arrayLength, arrayLength);
|
||
|
}
|
||
|
|
||
|
checkCudaErrors(cudaDeviceSynchronize());
|
||
|
sdkStopTimer(&hTimer);
|
||
|
double timerValue = 1.0e-3 * sdkGetTimerValue(&hTimer) / iCycles;
|
||
|
|
||
|
printf("Validating the results...\n");
|
||
|
printf("...reading back GPU results\n");
|
||
|
checkCudaErrors(cudaMemcpy(h_OutputGPU, d_Output, N * sizeof(uint),
|
||
|
cudaMemcpyDeviceToHost));
|
||
|
|
||
|
printf("...scanExclusiveHost()\n");
|
||
|
scanExclusiveHost(h_OutputCPU, h_Input, N / arrayLength, arrayLength);
|
||
|
|
||
|
// Compare GPU results with CPU results and accumulate error for this test
|
||
|
printf(" ...comparing the results\n");
|
||
|
int localFlag = 1;
|
||
|
|
||
|
for (uint i = 0; i < N; i++) {
|
||
|
if (h_OutputCPU[i] != h_OutputGPU[i]) {
|
||
|
localFlag = 0;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Log message on individual test result, then accumulate to global flag
|
||
|
printf(" ...Results %s\n\n",
|
||
|
(localFlag == 1) ? "Match" : "DON'T Match !!!");
|
||
|
globalFlag = globalFlag && localFlag;
|
||
|
|
||
|
// Data log
|
||
|
if (arrayLength == MAX_LARGE_ARRAY_SIZE) {
|
||
|
printf("\n");
|
||
|
printf(
|
||
|
"scan, Throughput = %.4f MElements/s, Time = %.5f s, Size = %u "
|
||
|
"Elements, NumDevsUsed = %u, Workgroup = %u\n",
|
||
|
(1.0e-6 * (double)arrayLength / timerValue), timerValue,
|
||
|
(unsigned int)arrayLength, 1, (unsigned int)szWorkgroup);
|
||
|
printf("\n");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
printf("Shutting down...\n");
|
||
|
closeScan();
|
||
|
checkCudaErrors(cudaFree(d_Output));
|
||
|
checkCudaErrors(cudaFree(d_Input));
|
||
|
|
||
|
sdkDeleteTimer(&hTimer);
|
||
|
|
||
|
// pass or fail (cumulative... all tests in the loop)
|
||
|
exit(globalFlag ? EXIT_SUCCESS : EXIT_FAILURE);
|
||
|
}
|