mirror of
https://github.com/NVIDIA/cuda-samples.git
synced 2024-11-28 16:09:17 +08:00
241 lines
7.9 KiB
Plaintext
241 lines
7.9 KiB
Plaintext
|
/* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* * Redistributions of source code must retain the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* * Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
||
|
* contributors may be used to endorse or promote products derived
|
||
|
* from this software without specific prior written permission.
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
||
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
||
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
||
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
||
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
||
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
||
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
*/
|
||
|
|
||
|
#include <iostream>
|
||
|
#include <helper_cuda.h> // helper functions for CUDA error check
|
||
|
|
||
|
const int manualBlockSize = 32;
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// Test kernel
|
||
|
//
|
||
|
// This kernel squares each array element. Each thread addresses
|
||
|
// himself with threadIdx and blockIdx, so that it can handle any
|
||
|
// execution configuration, including anything the launch configurator
|
||
|
// API suggests.
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
__global__ void square(int *array, int arrayCount) {
|
||
|
extern __shared__ int dynamicSmem[];
|
||
|
int idx = threadIdx.x + blockIdx.x * blockDim.x;
|
||
|
|
||
|
if (idx < arrayCount) {
|
||
|
array[idx] *= array[idx];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// Potential occupancy calculator
|
||
|
//
|
||
|
// The potential occupancy is calculated according to the kernel and
|
||
|
// execution configuration the user desires. Occupancy is defined in
|
||
|
// terms of active blocks per multiprocessor, and the user can convert
|
||
|
// it to other metrics.
|
||
|
//
|
||
|
// This wrapper routine computes the occupancy of kernel, and reports
|
||
|
// it in terms of active warps / maximum warps per SM.
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
static double reportPotentialOccupancy(void *kernel, int blockSize,
|
||
|
size_t dynamicSMem) {
|
||
|
int device;
|
||
|
cudaDeviceProp prop;
|
||
|
|
||
|
int numBlocks;
|
||
|
int activeWarps;
|
||
|
int maxWarps;
|
||
|
|
||
|
double occupancy;
|
||
|
|
||
|
checkCudaErrors(cudaGetDevice(&device));
|
||
|
checkCudaErrors(cudaGetDeviceProperties(&prop, device));
|
||
|
|
||
|
checkCudaErrors(cudaOccupancyMaxActiveBlocksPerMultiprocessor(
|
||
|
&numBlocks, kernel, blockSize, dynamicSMem));
|
||
|
|
||
|
activeWarps = numBlocks * blockSize / prop.warpSize;
|
||
|
maxWarps = prop.maxThreadsPerMultiProcessor / prop.warpSize;
|
||
|
|
||
|
occupancy = (double)activeWarps / maxWarps;
|
||
|
|
||
|
return occupancy;
|
||
|
}
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// Occupancy-based launch configurator
|
||
|
//
|
||
|
// The launch configurator, cudaOccupancyMaxPotentialBlockSize and
|
||
|
// cudaOccupancyMaxPotentialBlockSizeVariableSMem, suggests a block
|
||
|
// size that achieves the best theoretical occupancy. It also returns
|
||
|
// the minimum number of blocks needed to achieve the occupancy on the
|
||
|
// whole device.
|
||
|
//
|
||
|
// This launch configurator is purely occupancy-based. It doesn't
|
||
|
// translate directly to performance, but the suggestion should
|
||
|
// nevertheless be a good starting point for further optimizations.
|
||
|
//
|
||
|
// This function configures the launch based on the "automatic"
|
||
|
// argument, records the runtime, and reports occupancy and runtime.
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
static int launchConfig(int *array, int arrayCount, bool automatic) {
|
||
|
int blockSize;
|
||
|
int minGridSize;
|
||
|
int gridSize;
|
||
|
size_t dynamicSMemUsage = 0;
|
||
|
|
||
|
cudaEvent_t start;
|
||
|
cudaEvent_t end;
|
||
|
|
||
|
float elapsedTime;
|
||
|
|
||
|
double potentialOccupancy;
|
||
|
|
||
|
checkCudaErrors(cudaEventCreate(&start));
|
||
|
checkCudaErrors(cudaEventCreate(&end));
|
||
|
|
||
|
if (automatic) {
|
||
|
checkCudaErrors(cudaOccupancyMaxPotentialBlockSize(
|
||
|
&minGridSize, &blockSize, (void *)square, dynamicSMemUsage,
|
||
|
arrayCount));
|
||
|
|
||
|
std::cout << "Suggested block size: " << blockSize << std::endl
|
||
|
<< "Minimum grid size for maximum occupancy: " << minGridSize
|
||
|
<< std::endl;
|
||
|
} else {
|
||
|
// This block size is too small. Given limited number of
|
||
|
// active blocks per multiprocessor, the number of active
|
||
|
// threads will be limited, and thus unable to achieve maximum
|
||
|
// occupancy.
|
||
|
//
|
||
|
blockSize = manualBlockSize;
|
||
|
}
|
||
|
|
||
|
// Round up
|
||
|
//
|
||
|
gridSize = (arrayCount + blockSize - 1) / blockSize;
|
||
|
|
||
|
// Launch and profile
|
||
|
//
|
||
|
checkCudaErrors(cudaEventRecord(start));
|
||
|
square<<<gridSize, blockSize, dynamicSMemUsage>>>(array, arrayCount);
|
||
|
checkCudaErrors(cudaEventRecord(end));
|
||
|
|
||
|
checkCudaErrors(cudaDeviceSynchronize());
|
||
|
|
||
|
// Calculate occupancy
|
||
|
//
|
||
|
potentialOccupancy =
|
||
|
reportPotentialOccupancy((void *)square, blockSize, dynamicSMemUsage);
|
||
|
|
||
|
std::cout << "Potential occupancy: " << potentialOccupancy * 100 << "%"
|
||
|
<< std::endl;
|
||
|
|
||
|
// Report elapsed time
|
||
|
//
|
||
|
checkCudaErrors(cudaEventElapsedTime(&elapsedTime, start, end));
|
||
|
std::cout << "Elapsed time: " << elapsedTime << "ms" << std::endl;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// The test
|
||
|
//
|
||
|
// The test generates an array and squares it with a CUDA kernel, then
|
||
|
// verifies the result.
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
static int test(bool automaticLaunchConfig, const int count = 1000000) {
|
||
|
int *array;
|
||
|
int *dArray;
|
||
|
int size = count * sizeof(int);
|
||
|
|
||
|
array = new int[count];
|
||
|
|
||
|
for (int i = 0; i < count; i += 1) {
|
||
|
array[i] = i;
|
||
|
}
|
||
|
|
||
|
checkCudaErrors(cudaMalloc(&dArray, size));
|
||
|
checkCudaErrors(cudaMemcpy(dArray, array, size, cudaMemcpyHostToDevice));
|
||
|
|
||
|
for (int i = 0; i < count; i += 1) {
|
||
|
array[i] = 0;
|
||
|
}
|
||
|
|
||
|
launchConfig(dArray, count, automaticLaunchConfig);
|
||
|
|
||
|
checkCudaErrors(cudaMemcpy(array, dArray, size, cudaMemcpyDeviceToHost));
|
||
|
checkCudaErrors(cudaFree(dArray));
|
||
|
|
||
|
// Verify the return data
|
||
|
//
|
||
|
for (int i = 0; i < count; i += 1) {
|
||
|
if (array[i] != i * i) {
|
||
|
std::cout << "element " << i << " expected " << i * i << " actual "
|
||
|
<< array[i] << std::endl;
|
||
|
return 1;
|
||
|
}
|
||
|
}
|
||
|
delete[] array;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
// Sample Main
|
||
|
//
|
||
|
// The sample runs the test with manually configured launch and
|
||
|
// automatically configured launch, and reports the occupancy and
|
||
|
// performance.
|
||
|
////////////////////////////////////////////////////////////////////////////////
|
||
|
int main() {
|
||
|
int status;
|
||
|
|
||
|
std::cout << "starting Simple Occupancy" << std::endl << std::endl;
|
||
|
|
||
|
std::cout << "[ Manual configuration with " << manualBlockSize
|
||
|
<< " threads per block ]" << std::endl;
|
||
|
|
||
|
status = test(false);
|
||
|
if (status) {
|
||
|
std::cerr << "Test failed\n" << std::endl;
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
std::cout << std::endl;
|
||
|
|
||
|
std::cout << "[ Automatic, occupancy-based configuration ]" << std::endl;
|
||
|
status = test(true);
|
||
|
if (status) {
|
||
|
std::cerr << "Test failed\n" << std::endl;
|
||
|
return -1;
|
||
|
}
|
||
|
|
||
|
std::cout << std::endl;
|
||
|
std::cout << "Test PASSED\n" << std::endl;
|
||
|
|
||
|
return 0;
|
||
|
}
|