2022-01-13 14:05:24 +08:00
|
|
|
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
|
2021-10-21 19:04:49 +08:00
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* * Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* * Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* * Neither the name of NVIDIA CORPORATION nor the names of its
|
|
|
|
* contributors may be used to endorse or promote products derived
|
|
|
|
* from this software without specific prior written permission.
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
|
|
|
|
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
|
|
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
|
|
|
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This sample implements a separable convolution filter
|
|
|
|
* of a 2D image with an arbitrary kernel.
|
|
|
|
*/
|
|
|
|
|
|
|
|
// CUDA runtime
|
|
|
|
#include <cuda_runtime.h>
|
|
|
|
|
|
|
|
// Utilities and system includes
|
|
|
|
#include <helper_functions.h>
|
|
|
|
#include <helper_cuda.h>
|
|
|
|
|
|
|
|
#include "convolutionSeparable_common.h"
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Reference CPU convolution
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
extern "C" void convolutionRowCPU(float *h_Result, float *h_Data,
|
|
|
|
float *h_Kernel, int imageW, int imageH,
|
|
|
|
int kernelR);
|
|
|
|
|
|
|
|
extern "C" void convolutionColumnCPU(float *h_Result, float *h_Data,
|
|
|
|
float *h_Kernel, int imageW, int imageH,
|
|
|
|
int kernelR);
|
|
|
|
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
// Main program
|
|
|
|
////////////////////////////////////////////////////////////////////////////////
|
|
|
|
int main(int argc, char **argv) {
|
|
|
|
// start logs
|
|
|
|
printf("[%s] - Starting...\n", argv[0]);
|
|
|
|
|
|
|
|
float *h_Kernel, *h_Input, *h_Buffer, *h_OutputCPU, *h_OutputGPU;
|
|
|
|
|
|
|
|
float *d_Input, *d_Output, *d_Buffer;
|
|
|
|
|
|
|
|
const int imageW = 3072;
|
|
|
|
const int imageH = 3072;
|
|
|
|
const int iterations = 16;
|
|
|
|
|
|
|
|
StopWatchInterface *hTimer = NULL;
|
|
|
|
|
|
|
|
// Use command-line specified CUDA device, otherwise use device with highest
|
|
|
|
// Gflops/s
|
|
|
|
findCudaDevice(argc, (const char **)argv);
|
|
|
|
|
|
|
|
sdkCreateTimer(&hTimer);
|
|
|
|
|
|
|
|
printf("Image Width x Height = %i x %i\n\n", imageW, imageH);
|
|
|
|
printf("Allocating and initializing host arrays...\n");
|
|
|
|
h_Kernel = (float *)malloc(KERNEL_LENGTH * sizeof(float));
|
|
|
|
h_Input = (float *)malloc(imageW * imageH * sizeof(float));
|
|
|
|
h_Buffer = (float *)malloc(imageW * imageH * sizeof(float));
|
|
|
|
h_OutputCPU = (float *)malloc(imageW * imageH * sizeof(float));
|
|
|
|
h_OutputGPU = (float *)malloc(imageW * imageH * sizeof(float));
|
|
|
|
srand(200);
|
|
|
|
|
|
|
|
for (unsigned int i = 0; i < KERNEL_LENGTH; i++) {
|
|
|
|
h_Kernel[i] = (float)(rand() % 16);
|
|
|
|
}
|
|
|
|
|
|
|
|
for (unsigned i = 0; i < imageW * imageH; i++) {
|
|
|
|
h_Input[i] = (float)(rand() % 16);
|
|
|
|
}
|
|
|
|
|
|
|
|
printf("Allocating and initializing CUDA arrays...\n");
|
|
|
|
checkCudaErrors(
|
|
|
|
cudaMalloc((void **)&d_Input, imageW * imageH * sizeof(float)));
|
|
|
|
checkCudaErrors(
|
|
|
|
cudaMalloc((void **)&d_Output, imageW * imageH * sizeof(float)));
|
|
|
|
checkCudaErrors(
|
|
|
|
cudaMalloc((void **)&d_Buffer, imageW * imageH * sizeof(float)));
|
|
|
|
|
|
|
|
setConvolutionKernel(h_Kernel);
|
|
|
|
checkCudaErrors(cudaMemcpy(d_Input, h_Input, imageW * imageH * sizeof(float),
|
|
|
|
cudaMemcpyHostToDevice));
|
|
|
|
|
|
|
|
printf("Running GPU convolution (%u identical iterations)...\n\n",
|
|
|
|
iterations);
|
|
|
|
|
|
|
|
for (int i = -1; i < iterations; i++) {
|
|
|
|
// i == -1 -- warmup iteration
|
|
|
|
if (i == 0) {
|
|
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
|
|
sdkResetTimer(&hTimer);
|
|
|
|
sdkStartTimer(&hTimer);
|
|
|
|
}
|
|
|
|
|
|
|
|
convolutionRowsGPU(d_Buffer, d_Input, imageW, imageH);
|
|
|
|
|
|
|
|
convolutionColumnsGPU(d_Output, d_Buffer, imageW, imageH);
|
|
|
|
}
|
|
|
|
|
|
|
|
checkCudaErrors(cudaDeviceSynchronize());
|
|
|
|
sdkStopTimer(&hTimer);
|
|
|
|
double gpuTime = 0.001 * sdkGetTimerValue(&hTimer) / (double)iterations;
|
|
|
|
printf(
|
|
|
|
"convolutionSeparable, Throughput = %.4f MPixels/sec, Time = %.5f s, "
|
|
|
|
"Size = %u Pixels, NumDevsUsed = %i, Workgroup = %u\n",
|
|
|
|
(1.0e-6 * (double)(imageW * imageH) / gpuTime), gpuTime,
|
|
|
|
(imageW * imageH), 1, 0);
|
|
|
|
|
|
|
|
printf("\nReading back GPU results...\n\n");
|
|
|
|
checkCudaErrors(cudaMemcpy(h_OutputGPU, d_Output,
|
|
|
|
imageW * imageH * sizeof(float),
|
|
|
|
cudaMemcpyDeviceToHost));
|
|
|
|
|
|
|
|
printf("Checking the results...\n");
|
|
|
|
printf(" ...running convolutionRowCPU()\n");
|
|
|
|
convolutionRowCPU(h_Buffer, h_Input, h_Kernel, imageW, imageH, KERNEL_RADIUS);
|
|
|
|
|
|
|
|
printf(" ...running convolutionColumnCPU()\n");
|
|
|
|
convolutionColumnCPU(h_OutputCPU, h_Buffer, h_Kernel, imageW, imageH,
|
|
|
|
KERNEL_RADIUS);
|
|
|
|
|
|
|
|
printf(" ...comparing the results\n");
|
|
|
|
double sum = 0, delta = 0;
|
|
|
|
|
|
|
|
for (unsigned i = 0; i < imageW * imageH; i++) {
|
|
|
|
delta +=
|
|
|
|
(h_OutputGPU[i] - h_OutputCPU[i]) * (h_OutputGPU[i] - h_OutputCPU[i]);
|
|
|
|
sum += h_OutputCPU[i] * h_OutputCPU[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
double L2norm = sqrt(delta / sum);
|
|
|
|
printf(" ...Relative L2 norm: %E\n\n", L2norm);
|
|
|
|
printf("Shutting down...\n");
|
|
|
|
|
|
|
|
checkCudaErrors(cudaFree(d_Buffer));
|
|
|
|
checkCudaErrors(cudaFree(d_Output));
|
|
|
|
checkCudaErrors(cudaFree(d_Input));
|
|
|
|
free(h_OutputGPU);
|
|
|
|
free(h_OutputCPU);
|
|
|
|
free(h_Buffer);
|
|
|
|
free(h_Input);
|
|
|
|
free(h_Kernel);
|
|
|
|
|
|
|
|
sdkDeleteTimer(&hTimer);
|
|
|
|
|
|
|
|
if (L2norm > 1e-6) {
|
|
|
|
printf("Test failed!\n");
|
|
|
|
exit(EXIT_FAILURE);
|
|
|
|
}
|
|
|
|
|
|
|
|
printf("Test passed\n");
|
|
|
|
exit(EXIT_SUCCESS);
|
|
|
|
}
|